IGNF
/

FLAIR-HUB_LC-G_utae / README.md
AGarioud's picture
Update README.md
68e8f52 verified
metadata
license: etalab-2.0
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-G_utae
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - name: mIoU
            type: mIoU
            value: 34.239
          - name: Overall Accuracy
            type: OA
            value: 57.826
          - name: IoU building
            type: IoU
            value: 34.908
          - name: IoU greenhouse
            type: IoU
            value: 0
          - name: IoU swimming pool
            type: IoU
            value: 61.59
          - name: IoU impervious surface
            type: IoU
            value: 38.267
          - name: IoU pervious surface
            type: IoU
            value: 27.432
          - name: IoU bare soil
            type: IoU
            value: 33.594
          - name: IoU water
            type: IoU
            value: 65.32
          - name: IoU snow
            type: IoU
            value: 67.543
          - name: IoU herbaceous vegetation
            type: IoU
            value: 34.435
          - name: IoU agricultural land
            type: IoU
            value: 42.083
          - name: IoU plowed land
            type: IoU
            value: 10.228
          - name: IoU vineyard
            type: IoU
            value: 41.105
          - name: IoU deciduous
            type: IoU
            value: 55.992
          - name: IoU coniferous
            type: IoU
            value: 48.219
          - name: IoU brushwood
            type: IoU
            value: 14.462
pipeline_tag: image-segmentation

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-G_utae

  • Encoder: UTAE
  • Decoder: UTAE
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    34.24% 57.83% 47.30% 48.12% 47.59%
  • Params.: 0.9

General Informations


Training Config Hyperparameters

- Model architecture: UTAE
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - SENTINEL2_TS : [1,2,3,4,5,6,7,8,9,10]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 34.24%
Overall Accuracy 57.83%
F-score 47.30%
Precision 48.12%
Recall 47.59%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 34.91 51.75 54.37 49.37
greenhouse 0.00 0.00 0.00 0.00
swimming pool 0.00 0.00 0.00 0.00
impervious surface 38.27 55.35 51.43 59.92
pervious surface 27.43 43.05 51.24 37.12
bare soil 33.59 50.29 56.33 45.42
water 65.32 79.02 71.19 88.79
snow 67.54 80.63 69.71 95.61
herbaceous vegetation 34.44 51.23 51.81 50.66
agricultural land 42.08 59.24 57.01 61.65
plowed land 10.23 18.56 19.29 17.88
vineyard 41.10 58.26 67.59 51.20
deciduous 55.99 71.79 67.97 76.06
coniferous 48.22 65.06 77.39 56.12
brushwood 14.46 25.27 26.54 24.12
Selection deleted

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080