IGNF
/

AGarioud's picture
Update README.md
aedfe15 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
library_name: pytorch
model-index:
  - name: FLAIR-HUB_LC-A_swinbase-unet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 64.803
            name: mIoU
          - type: OA
            value: 77.93
            name: Overall Accuracy
          - type: IoU
            value: 84.7
            name: IoU building
          - type: IoU
            value: 79.029
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 76.228
            name: IoU impervious surface
          - type: IoU
            value: 57.509
            name: IoU pervious surface
          - type: IoU
            value: 64.232
            name: IoU bare soil
          - type: IoU
            value: 90.6
            name: IoU water
          - type: IoU
            value: 63.761
            name: IoU snow
          - type: IoU
            value: 54.897
            name: IoU herbaceous vegetation
          - type: IoU
            value: 58.304
            name: IoU agricultural land
          - type: IoU
            value: 37.635
            name: IoU plowed land
          - type: IoU
            value: 78.314
            name: IoU vineyard
          - type: IoU
            value: 72.073
            name: IoU deciduous
          - type: IoU
            value: 62.519
            name: IoU coniferous
          - type: IoU
            value: 30.084
            name: IoU brushwood

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_swinbase-unet

  • Encoder: swin_base_patch4_window12_384
  • Decoder: unet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    64.80% 77.93% 77.43% 78.16% 77.17%
  • Params.: 92.8

General Informations


Training Config Hyperparameters

- Model architecture: swin_base_patch4_window12_384-unet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 64.80%
Overall Accuracy 77.93%
F-score 77.43%
Precision 78.16%
Recall 77.17%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 84.70 91.72 91.98 91.46
greenhouse 79.03 88.29 85.94 90.77
swimming pool 62.16 76.67 76.55 76.79
impervious surface 76.23 86.51 86.75 86.28
pervious surface 57.51 73.02 70.90 75.28
bare soil 64.23 78.22 74.68 82.12
water 90.60 95.07 95.95 94.20
snow 63.76 77.87 94.88 66.03
herbaceous vegetation 54.90 70.88 73.05 68.84
agricultural land 58.30 73.66 70.66 76.93
plowed land 37.64 54.69 53.87 55.53
vineyard 78.31 87.84 85.25 90.59
deciduous 72.07 83.77 81.89 85.74
coniferous 62.52 76.94 80.55 73.64
brushwood 30.08 46.25 49.53 43.39

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080