--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover library_name: pytorch model-index: - name: FLAIR-HUB_LC-A_swinbase-unet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 64.803 name: mIoU - type: OA value: 77.93 name: Overall Accuracy - type: IoU value: 84.7 name: IoU building - type: IoU value: 79.029 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 76.228 name: IoU impervious surface - type: IoU value: 57.509 name: IoU pervious surface - type: IoU value: 64.232 name: IoU bare soil - type: IoU value: 90.6 name: IoU water - type: IoU value: 63.761 name: IoU snow - type: IoU value: 54.897 name: IoU herbaceous vegetation - type: IoU value: 58.304 name: IoU agricultural land - type: IoU value: 37.635 name: IoU plowed land - type: IoU value: 78.314 name: IoU vineyard - type: IoU value: 72.073 name: IoU deciduous - type: IoU value: 62.519 name: IoU coniferous - type: IoU value: 30.084 name: IoU brushwood ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_swinbase-unet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Project page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: swin_base_patch4_window12_384-unet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [4,1,2] - Input normalization (custom): - AERIAL_RGBI: mean: [106.59, 105.66, 111.35] std: [39.78, 52.23, 45.62] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 64.80% | | Overall Accuracy | 77.93% | | F-score | 77.43% | | Precision | 78.16% | | Recall | 77.17% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 84.70 | 91.72 | 91.98 | 91.46 | | greenhouse | 79.03 | 88.29 | 85.94 | 90.77 | | swimming pool | 62.16 | 76.67 | 76.55 | 76.79 | | impervious surface | 76.23 | 86.51 | 86.75 | 86.28 | | pervious surface | 57.51 | 73.02 | 70.90 | 75.28 | | bare soil | 64.23 | 78.22 | 74.68 | 82.12 | | water | 90.60 | 95.07 | 95.95 | 94.20 | | snow | 63.76 | 77.87 | 94.88 | 66.03 | | herbaceous vegetation | 54.90 | 70.88 | 73.05 | 68.84 | | agricultural land | 58.30 | 73.66 | 70.66 | 76.93 | | plowed land | 37.64 | 54.69 | 53.87 | 55.53 | | vineyard | 78.31 | 87.84 | 85.25 | 90.59 | | deciduous | 72.07 | 83.77 | 81.89 | 85.74 | | coniferous | 62.52 | 76.94 | 80.55 | 73.64 | | brushwood | 30.08 | 46.25 | 49.53 | 43.39 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```