metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
- semantic segmentation
- pytorch
- landcover
library_name: pytorch
model-index:
- name: FLAIR-HUB_LC-A_convnextv2tiny-upernet
results:
- task:
type: semantic-segmentation
dataset:
name: IGNF/FLAIR-HUB/
type: earth-observation-dataset
metrics:
- type: mIoU
value: 62.725
name: mIoU
- type: OA
value: 76.434
name: Overall Accuracy
- type: IoU
value: 82.565
name: IoU building
- type: IoU
value: 75.292
name: IoU greenhouse
- type: IoU
value: 61.59
name: IoU swimming pool
- type: IoU
value: 73.768
name: IoU impervious surface
- type: IoU
value: 55.136
name: IoU pervious surface
- type: IoU
value: 60.195
name: IoU bare soil
- type: IoU
value: 88.596
name: IoU water
- type: IoU
value: 64.808
name: IoU snow
- type: IoU
value: 53.2
name: IoU herbaceous vegetation
- type: IoU
value: 55.828
name: IoU agricultural land
- type: IoU
value: 35.343
name: IoU plowed land
- type: IoU
value: 76.054
name: IoU vineyard
- type: IoU
value: 70.93
name: IoU deciduous
- type: IoU
value: 60.604
name: IoU coniferous
- type: IoU
value: 29.504
name: IoU brushwood
🌐 FLAIR-HUB Model Collection
- Trained on: FLAIR-HUB dataset 🔗
- Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
- Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
- Decoders: UNet, UPerNet
- Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
- Class nomenclature: 15 classes for LC, 23 classes for LPIS
🔍 Model: FLAIR-HUB_LC-A_convnextv2tiny-upernet
- Encoder: convnextv2_tiny
- Decoder: upernet
- Metrics:
- Params.: 29.8
General Informations
- Contact: [email protected]
- Code repository: https://github.com/IGNF/FLAIR-HUB
- Paper: https://arxiv.org/abs/2506.07080
- Developed by: IGN
- Compute infrastructure:
- software: python, pytorch-lightning
- hardware: HPC/AI resources provided by GENCI-IDRIS
- License: Etalab 2.0
Training Config Hyperparameters
- Model architecture: convnextv2_tiny-upernet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
- default: 1.0
- masked classes: [clear cut, ligneous, mixed, other] → weight = 0
- Input channels:
- AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
- AERIAL_RGBI:
mean: [106.59, 105.66, 111.35]
std: [39.78, 52.23, 45.62]
Training Data
- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700

Training Logging

Metrics
Metric | Value |
---|---|
mIoU | 62.73% |
Overall Accuracy | 76.43% |
F-score | 75.87% |
Precision | 76.22% |
Recall | 75.72% |
Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
building | 82.57 | 90.45 | 90.96 | 89.94 |
greenhouse | 75.29 | 85.90 | 83.32 | 88.66 |
swimming pool | 59.06 | 74.26 | 75.33 | 73.23 |
impervious surface | 73.77 | 84.90 | 85.42 | 84.40 |
pervious surface | 55.14 | 71.08 | 70.18 | 72.00 |
bare soil | 60.20 | 75.15 | 72.82 | 77.64 |
water | 88.60 | 93.95 | 95.09 | 92.85 |
snow | 64.81 | 78.65 | 87.46 | 71.45 |
herbaceous vegetation | 53.20 | 69.45 | 70.50 | 68.43 |
agricultural land | 55.83 | 71.65 | 69.34 | 74.12 |
plowed land | 35.34 | 52.23 | 50.89 | 53.63 |
vineyard | 76.05 | 86.40 | 84.28 | 88.62 |
deciduous | 70.93 | 82.99 | 81.83 | 84.19 |
coniferous | 60.60 | 75.47 | 78.67 | 72.52 |
brushwood | 29.50 | 45.56 | 47.15 | 44.09 |
Inference
Aerial ROI

Inference ROI

Cite
BibTeX:
@article{ign2025flairhub,
doi = {10.48550/arXiv.2506.07080},
url = {https://arxiv.org/abs/2506.07080},
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
publisher = {arXiv},
year = {2025}
}
APA:
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025).
DOI: https://doi.org/10.48550/arXiv.2506.07080