IGNF
/

AGarioud's picture
Update README.md
ed5a4d3 verified
metadata
license: etalab-2.0
pipeline_tag: image-segmentation
tags:
  - semantic segmentation
  - pytorch
  - landcover
model-index:
  - name: FLAIR-HUB_LC-A_convnextv2base-unet
    results:
      - task:
          type: semantic-segmentation
        dataset:
          name: IGNF/FLAIR-HUB/
          type: earth-observation-dataset
        metrics:
          - type: mIoU
            value: 64.162
            name: mIoU
          - type: OA
            value: 77.166
            name: Overall Accuracy
          - type: IoU
            value: 84.153
            name: IoU building
          - type: IoU
            value: 76.218
            name: IoU greenhouse
          - type: IoU
            value: 61.59
            name: IoU swimming pool
          - type: IoU
            value: 75.239
            name: IoU impervious surface
          - type: IoU
            value: 56.174
            name: IoU pervious surface
          - type: IoU
            value: 63.016
            name: IoU bare soil
          - type: IoU
            value: 88.96
            name: IoU water
          - type: IoU
            value: 72.539
            name: IoU snow
          - type: IoU
            value: 54.219
            name: IoU herbaceous vegetation
          - type: IoU
            value: 57.088
            name: IoU agricultural land
          - type: IoU
            value: 36.271
            name: IoU plowed land
          - type: IoU
            value: 77.468
            name: IoU vineyard
          - type: IoU
            value: 71.327
            name: IoU deciduous
          - type: IoU
            value: 60.427
            name: IoU coniferous
          - type: IoU
            value: 29.305
            name: IoU brushwood
library_name: pytorch

🌐 FLAIR-HUB Model Collection

  • Trained on: FLAIR-HUB dataset 🔗
  • Available modalities: Aerial images, SPOT images, Topographic info, Sentinel-2 yearly time-series, Sentinel-1 yearly time-series, Historical aerial images
  • Encoders: ConvNeXTV2, Swin (Tiny, Small, Base, Large)
  • Decoders: UNet, UPerNet
  • Tasks: Land-cover mapping (LC), Crop-type mapping (LPIS)
  • Class nomenclature: 15 classes for LC, 23 classes for LPIS
🆔
Model ID
🗺️
Land-cover
🌾
Crop-types
🛩️
Aerial
⛰️
Elevation
🛰️
SPOT
🛰️
S2 t.s.
🛰️
S1 t.s.
🛩️
Historical
LC-A
LC-D
LC-F
LC-G
LC-I
LC-L
LPIS-A
LPIS-F
LPIS-I
LPIS-J

🔍 Model: FLAIR-HUB_LC-A_convnextv2base-unet

  • Encoder: convnextv2_base
  • Decoder: unet
  • Metrics:
  • mIoU O.A. F-score Precision Recall
    64.16% 77.17% 76.92% 77.58% 76.59%
  • Params.: 92.8

General Informations


Training Config Hyperparameters

- Model architecture: convnextv2_base-unet
- Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01)
- Learning rate: 5e-5
- Scheduler: one_cycle_lr (warmup_fraction=0.2)
- Epochs: 150
- Batch size: 5
- Seed: 2025
- Early stopping: patience 20, monitor val_miou (mode=max)
- Class weights:
    - default: 1.0
    - masked classes: [clear cut, ligneous, mixed, other]  weight = 0
- Input channels:
    - AERIAL_RGBI : [4,1,2]
- Input normalization (custom):
    - AERIAL_RGBI:
        mean: [106.59, 105.66, 111.35]
        std:  [39.78, 52.23, 45.62]

Training Data

- Train patches: 152225
- Validation patches: 38175
- Test patches: 50700
Classes distribution.

Training Logging

Training logging.

Metrics

Metric Value
mIoU 64.13%
Overall Accuracy 77.45%
F-score 76.88%
Precision 77.36%
Recall 76.89%
Class IoU (%) F-score (%) Precision (%) Recall (%)
building 84.15 91.39 91.15 91.64
greenhouse 76.22 86.50 84.11 89.04
swimming pool 60.03 75.02 76.08 73.99
impervious surface 75.24 85.87 86.75 85.01
pervious surface 56.17 71.94 69.87 74.14
bare soil 63.02 77.31 74.19 80.71
water 88.96 94.16 94.98 93.35
snow 72.54 84.08 97.77 73.76
herbaceous vegetation 54.22 70.31 71.67 69.01
agricultural land 57.09 72.68 69.75 75.87
plowed land 36.27 53.23 52.71 53.77
vineyard 77.47 87.30 85.34 89.36
deciduous 71.33 83.26 81.90 84.67
coniferous 60.43 75.33 80.13 71.08
brushwood 29.30 45.33 47.34 43.48

Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE

Cite

BibTeX:

@article{ign2025flairhub,
  doi = {10.48550/arXiv.2506.07080},
  url = {https://arxiv.org/abs/2506.07080},
  author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas},
  title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping},
  publisher = {arXiv},
  year = {2025}
}

APA:

Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. 
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). 
DOI: https://doi.org/10.48550/arXiv.2506.07080