--- license: etalab-2.0 pipeline_tag: image-segmentation tags: - semantic segmentation - pytorch - landcover model-index: - name: FLAIR-HUB_LC-A_convnextv2base-unet results: - task: type: semantic-segmentation dataset: name: IGNF/FLAIR-HUB/ type: earth-observation-dataset metrics: - type: mIoU value: 64.162 name: mIoU - type: OA value: 77.166 name: Overall Accuracy - type: IoU value: 84.153 name: IoU building - type: IoU value: 76.218 name: IoU greenhouse - type: IoU value: 61.59 name: IoU swimming pool - type: IoU value: 75.239 name: IoU impervious surface - type: IoU value: 56.174 name: IoU pervious surface - type: IoU value: 63.016 name: IoU bare soil - type: IoU value: 88.96 name: IoU water - type: IoU value: 72.539 name: IoU snow - type: IoU value: 54.219 name: IoU herbaceous vegetation - type: IoU value: 57.088 name: IoU agricultural land - type: IoU value: 36.271 name: IoU plowed land - type: IoU value: 77.468 name: IoU vineyard - type: IoU value: 71.327 name: IoU deciduous - type: IoU value: 60.427 name: IoU coniferous - type: IoU value: 29.305 name: IoU brushwood library_name: pytorch ---

🌐 FLAIR-HUB Model Collection

πŸ†”
Model ID
πŸ—ΊοΈ
Land-cover
🌾
Crop-types
πŸ›©οΈ
Aerial
⛰️
Elevation
πŸ›°οΈ
SPOT
πŸ›°οΈ
S2 t.s.
πŸ›°οΈ
S1 t.s.
πŸ›©οΈ
Historical
LC-A βœ“ βœ“
LC-D βœ“ βœ“ βœ“
LC-F βœ“ βœ“ βœ“ βœ“
LC-G βœ“ βœ“
LC-I βœ“ βœ“
LC-L βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
LPIS-A βœ“ βœ“
LPIS-F βœ“ βœ“
LPIS-I βœ“ βœ“ βœ“ βœ“
LPIS-J βœ“ βœ“ βœ“ βœ“ βœ“

πŸ” Model: FLAIR-HUB_LC-A_convnextv2base-unet

--- ## General Informations - **Contact:** flair@ign.fr - **Code repository:** https://github.com/IGNF/FLAIR-HUB - **Paper:** https://arxiv.org/abs/2506.07080 - **Project page:** https://ignf.github.io/FLAIR/FLAIR-HUB/flairhub - **Developed by:** IGN - **Compute infrastructure:** - software: python, pytorch-lightning - hardware: HPC/AI resources provided by GENCI-IDRIS - **License:** Etalab 2.0 --- ### Training Config Hyperparameters ```yaml - Model architecture: convnextv2_base-unet - Optimizer: AdamW (betas=[0.9, 0.999], weight_decay=0.01) - Learning rate: 5e-5 - Scheduler: one_cycle_lr (warmup_fraction=0.2) - Epochs: 150 - Batch size: 5 - Seed: 2025 - Early stopping: patience 20, monitor val_miou (mode=max) - Class weights: - default: 1.0 - masked classes: [clear cut, ligneous, mixed, other] β†’ weight = 0 - Input channels: - AERIAL_RGBI : [4,1,2] - Input normalization (custom): - AERIAL_RGBI: mean: [106.59, 105.66, 111.35] std: [39.78, 52.23, 45.62] ``` --- ### Training Data ```yaml - Train patches: 152225 - Validation patches: 38175 - Test patches: 50700 ```
Classes distribution.
--- ### Training Logging
Training logging.
--- ## Metrics | Metric | Value | | ---------------- | ------ | | mIoU | 64.13% | | Overall Accuracy | 77.45% | | F-score | 76.88% | | Precision | 77.36% | | Recall | 76.89% | | Class | IoU (%) | F-score (%) | Precision (%) | Recall (%) | | --------------------- | ------- | ----------- | ------------- | ---------- | | building | 84.15 | 91.39 | 91.15 | 91.64 | | greenhouse | 76.22 | 86.50 | 84.11 | 89.04 | | swimming pool | 60.03 | 75.02 | 76.08 | 73.99 | | impervious surface | 75.24 | 85.87 | 86.75 | 85.01 | | pervious surface | 56.17 | 71.94 | 69.87 | 74.14 | | bare soil | 63.02 | 77.31 | 74.19 | 80.71 | | water | 88.96 | 94.16 | 94.98 | 93.35 | | snow | 72.54 | 84.08 | 97.77 | 73.76 | | herbaceous vegetation | 54.22 | 70.31 | 71.67 | 69.01 | | agricultural land | 57.09 | 72.68 | 69.75 | 75.87 | | plowed land | 36.27 | 53.23 | 52.71 | 53.77 | | vineyard | 77.47 | 87.30 | 85.34 | 89.36 | | deciduous | 71.33 | 83.26 | 81.90 | 84.67 | | coniferous | 60.43 | 75.33 | 80.13 | 71.08 | | brushwood | 29.30 | 45.33 | 47.34 | 43.48 | --- ## Inference

Aerial ROI

AERIAL

Inference ROI

INFERENCE
--- ## Cite **BibTeX:** ``` @article{ign2025flairhub, doi = {10.48550/arXiv.2506.07080}, url = {https://arxiv.org/abs/2506.07080}, author = {Garioud, Anatol and Giordano, SΓ©bastien and David, Nicolas and Gonthier, Nicolas}, title = {FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, publisher = {arXiv}, year = {2025} } ``` **APA:** ``` Anatol Garioud, SΓ©bastien Giordano, Nicolas David, Nicolas Gonthier. FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping. (2025). DOI: https://doi.org/10.48550/arXiv.2506.07080 ```