Upload mara_generator.py
Browse files- mara_generator.py +271 -0
mara_generator.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from loguru import logger as log
|
4 |
+
from torch.distributions import Categorical
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList, TopKLogitsWarper, TopPLogitsWarper, \
|
6 |
+
TemperatureLogitsWarper
|
7 |
+
|
8 |
+
|
9 |
+
class DiscreteActor(nn.Module):
|
10 |
+
def __init__(self, state_dim, action_dim, hidden_dim=1024):
|
11 |
+
super(DiscreteActor, self).__init__()
|
12 |
+
self.state_dim = state_dim
|
13 |
+
self.action_dim = action_dim
|
14 |
+
|
15 |
+
self.ln = nn.LayerNorm(state_dim)
|
16 |
+
self.linear1 = nn.Linear(self.state_dim, hidden_dim)
|
17 |
+
self.linear2 = nn.Linear(hidden_dim, int(hidden_dim / 4))
|
18 |
+
self.output_linear = nn.Linear(int(hidden_dim / 4), self.action_dim)
|
19 |
+
|
20 |
+
def forward(self, state):
|
21 |
+
state = self.ln(state)
|
22 |
+
x = torch.relu(self.linear1(state))
|
23 |
+
x = torch.relu(self.linear2(x))
|
24 |
+
output = torch.softmax(self.output_linear(x), dim=1)
|
25 |
+
return output
|
26 |
+
|
27 |
+
def sample(self, state):
|
28 |
+
state = state.unsqueeze(0)
|
29 |
+
prob = self.forward(state)
|
30 |
+
distribution = Categorical(torch.Tensor(prob))
|
31 |
+
sample_action = distribution.sample().unsqueeze(-1).detach()
|
32 |
+
z = (prob == 0.0).float() * 1e-8
|
33 |
+
logprob = torch.log(prob + z)
|
34 |
+
greedy_action = torch.argmax(prob, dim=-1).unsqueeze(-1) # 1d tensor
|
35 |
+
return sample_action, prob, logprob, greedy_action
|
36 |
+
|
37 |
+
def select_action(self, state):
|
38 |
+
state = state.unsqueeze(0)
|
39 |
+
prob = self.forward(state)
|
40 |
+
action = torch.argmax(prob, dim=-1).unsqueeze(-1) # 1d tensor
|
41 |
+
action = action.squeeze().tolist()
|
42 |
+
return action
|
43 |
+
|
44 |
+
|
45 |
+
class MARAGenerator():
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
agent_path, base_model_path, state_dim=4096, hidden_dim=1024, model_device="cuda:0",
|
49 |
+
max_new_token=2048, topk=40, topp=0.95, temperature=0.8
|
50 |
+
):
|
51 |
+
# 文本生成模型初始化
|
52 |
+
self.base_model_path = base_model_path
|
53 |
+
self.model_device = torch.device(model_device)
|
54 |
+
self.base_model = AutoModelForCausalLM.from_pretrained(self.base_model_path).to(
|
55 |
+
self.model_device).eval().requires_grad_(False)
|
56 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_path)
|
57 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
58 |
+
|
59 |
+
self.topk = topk
|
60 |
+
self.topp = topp
|
61 |
+
self.max_new_token = max_new_token
|
62 |
+
self.temperature = temperature
|
63 |
+
|
64 |
+
# instantiate logits processors and wraper
|
65 |
+
self.logits_wraper = LogitsProcessorList(
|
66 |
+
[TopKLogitsWarper(self.topk), TopPLogitsWarper(top_p=self.topp),
|
67 |
+
TemperatureLogitsWarper(self.temperature)])
|
68 |
+
|
69 |
+
'''init agent'''
|
70 |
+
self.mara_agent = self.get_mara_agent(agent_path, state_dim, hidden_dim).to(self.model_device)
|
71 |
+
# log.info("mara_agent:{}".format(self.mara_agent))
|
72 |
+
|
73 |
+
self.instruction = "" # 输入指令
|
74 |
+
self.generate_ids = [] # 已生成的token
|
75 |
+
self.new_token_cnt = 0 # 已生成token数
|
76 |
+
self.curr_input_ids = None # 生成new_token的输入input_id,
|
77 |
+
self.curr_new_token_ids_list = None # 采样的new_token
|
78 |
+
self.sum_logprobs = None
|
79 |
+
self.curr_new_outputs_list = None # 以self.curr_input_ids+curr_new_token_id为输入的模型输出
|
80 |
+
self.next_new_outputs_list = None # 对应self.curr_new_outputs_list下一个token
|
81 |
+
self.is_new_token = True
|
82 |
+
self.chosen_indices = None
|
83 |
+
self.cand_chosen_idx = 0
|
84 |
+
self.last_outputs = None
|
85 |
+
self.attention_mask = None
|
86 |
+
self.position_id = None
|
87 |
+
|
88 |
+
# proxy_detail
|
89 |
+
self.gen_info = {"gen_token_cnt": 0, # 每个样例生成的结果长度,len(gen_token_cnt_list)=sample_cnt
|
90 |
+
"proxy_token_cnt": 0, # 需要经过agent进行决策的token长度,len(proxy_token_cnt_listt)=sample_cnt
|
91 |
+
"cand_token_dict": {}, # 每个决策位的候选token数,1<=cand_token_cnt<=topK,0表示不需要决策
|
92 |
+
"accept_index_dict": {} # 每个决策位的选择第几个token, accept_idx
|
93 |
+
}
|
94 |
+
|
95 |
+
def get_mara_agent(self, agent_path, state_dim, hidden_dim):
|
96 |
+
mara_agent = DiscreteActor(state_dim, 2, hidden_dim)
|
97 |
+
log.info('Begin to load mara agent model from {}'.format(agent_path))
|
98 |
+
try:
|
99 |
+
model_state_dict = torch.load(agent_path, map_location=self.model_device)
|
100 |
+
mara_agent.load_state_dict(model_state_dict)
|
101 |
+
except Exception as e:
|
102 |
+
log.error("load mara_agent occur error: {}".format(str(e)))
|
103 |
+
raise
|
104 |
+
return mara_agent
|
105 |
+
|
106 |
+
def get_input_text(self, instruction):
|
107 |
+
messages = [{"role": "user", "content": instruction}]
|
108 |
+
input_text = self.tokenizer.apply_chat_template(
|
109 |
+
messages,
|
110 |
+
tokenize=False,
|
111 |
+
add_generation_prompt=True
|
112 |
+
)
|
113 |
+
return input_text
|
114 |
+
|
115 |
+
def get_raw_output(self, instruction, do_sample=True):
|
116 |
+
if do_sample:
|
117 |
+
generation_config = {"do_sample": True, "max_new_tokens": self.max_new_token, "top_k": self.topk,
|
118 |
+
"top_p": self.topp, "temperature": self.temperature}
|
119 |
+
else:
|
120 |
+
generation_config = {"do_sample": False, "max_new_tokens": self.max_new_token}
|
121 |
+
input_text = self.get_input_text(instruction)
|
122 |
+
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model_device)
|
123 |
+
|
124 |
+
output_ids = self.base_model.generate(**inputs, **generation_config)[0]
|
125 |
+
response = self.tokenizer.decode(output_ids[len(inputs.input_ids[0]):], skip_special_tokens=True)
|
126 |
+
return {"answer": response}
|
127 |
+
|
128 |
+
def get_proxy_output(self, instruction):
|
129 |
+
input_text = self.get_input_text(instruction)
|
130 |
+
model_inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model_device)
|
131 |
+
self.new_token_cnt = 0
|
132 |
+
self.generate_ids = []
|
133 |
+
self.gen_info = {"gen_token_cnt": 0, # 每个样例生成的结果长度,len(gen_token_cnt_list)=sample_cnt
|
134 |
+
"mara_token_cnt": 0, # 需要经过agent进行决策的token长度,len(proxy_token_cnt_list)=sample_cnt
|
135 |
+
"cand_token_dict": {}, # 每个决策位的候选token数,1<=cand_token_cnt<=topK,0表示不需要决策
|
136 |
+
"accept_index_dict": {} # 每个决策位的选择第几个token, accept_idx
|
137 |
+
}
|
138 |
+
|
139 |
+
input_ids = model_inputs.input_ids
|
140 |
+
self.attention_mask = model_inputs.attention_mask
|
141 |
+
self.curr_input_ids = input_ids
|
142 |
+
self.last_outputs = self.base_model(input_ids=input_ids,
|
143 |
+
attention_mask=self.attention_mask,
|
144 |
+
output_hidden_states=True)
|
145 |
+
|
146 |
+
# 一个token一个token地进行状态转移
|
147 |
+
self.is_new_token = True
|
148 |
+
self.cand_chosen_idx = 0
|
149 |
+
self.position_id = None
|
150 |
+
end_of_generate = False
|
151 |
+
while not end_of_generate:
|
152 |
+
end_of_generate, self.chosen_indices = self.rank_topk_ouputs_serial(self.curr_input_ids, self.last_outputs)
|
153 |
+
self.is_new_token = False
|
154 |
+
if end_of_generate:
|
155 |
+
break
|
156 |
+
accept_idx = 0
|
157 |
+
curr_new_outputs_list = []
|
158 |
+
for i in range(len(self.chosen_indices)):
|
159 |
+
_, curr_new_outputs = self.rank_topk_ouputs_serial(self.curr_input_ids, self.last_outputs)
|
160 |
+
curr_new_outputs_list.append(curr_new_outputs)
|
161 |
+
curr_state = curr_new_outputs['hidden_states'][-1][0, -1].to(self.model_device)
|
162 |
+
|
163 |
+
action = self.mara_agent.select_action(curr_state)
|
164 |
+
if action == 1:
|
165 |
+
accept_idx = i
|
166 |
+
break
|
167 |
+
self.is_new_token = True
|
168 |
+
# log.info(
|
169 |
+
# "new_token_cnt:{}/{}, accept_idx: {}".format(self.new_token_cnt, self.max_new_token, accept_idx))
|
170 |
+
accept_token_id = self.chosen_indices[accept_idx]
|
171 |
+
self.generate_ids.append(accept_token_id)
|
172 |
+
self.new_token_cnt += 1
|
173 |
+
self.gen_info["gen_token_cnt"] += 1
|
174 |
+
self.gen_info["mara_token_cnt"] += 1
|
175 |
+
if len(self.chosen_indices) not in self.gen_info["cand_token_dict"]:
|
176 |
+
self.gen_info["cand_token_dict"][len(self.chosen_indices)] = 1
|
177 |
+
else:
|
178 |
+
self.gen_info["cand_token_dict"][len(self.chosen_indices)] += 1
|
179 |
+
if accept_idx not in self.gen_info["accept_index_dict"]:
|
180 |
+
self.gen_info["accept_index_dict"][accept_idx] = 1
|
181 |
+
else:
|
182 |
+
self.gen_info["accept_index_dict"][accept_idx] += 1
|
183 |
+
|
184 |
+
self.curr_input_ids = torch.cat(
|
185 |
+
(self.curr_input_ids, torch.LongTensor([[accept_token_id]]).to(self.model_device)), dim=-1)
|
186 |
+
self.last_outputs = curr_new_outputs_list[accept_idx]
|
187 |
+
|
188 |
+
if accept_token_id == self.tokenizer.eos_token_id or self.new_token_cnt >= self.max_new_token:
|
189 |
+
end_of_generate = True
|
190 |
+
completion = self.tokenizer.decode(self.generate_ids, skip_special_tokens=True)
|
191 |
+
return {"answer": completion, "detail": self.gen_info}
|
192 |
+
|
193 |
+
def one_step_transfer(self, pre_input_ids, past_key_values, new_token_id):
|
194 |
+
attention_mask = torch.ones_like(pre_input_ids)
|
195 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
|
196 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
197 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
198 |
+
position_id = position_ids[:, -1:].to(self.model_device)
|
199 |
+
new_token_id = new_token_id.to(self.model_device)
|
200 |
+
|
201 |
+
new_outputs = self.base_model(input_ids=new_token_id,
|
202 |
+
attention_mask=attention_mask.to(self.model_device),
|
203 |
+
position_ids=position_id,
|
204 |
+
past_key_values=past_key_values,
|
205 |
+
output_hidden_states=True)
|
206 |
+
new_input_ids = torch.cat((pre_input_ids, new_token_id), dim=-1)
|
207 |
+
return new_input_ids, new_outputs
|
208 |
+
|
209 |
+
def rank_topk_ouputs_serial(self, pre_input_ids, last_outputs):
|
210 |
+
if self.is_new_token:
|
211 |
+
end_of_generate = False
|
212 |
+
next_token_logits = last_outputs.logits[:, -1, :].clone() # (batch_size, vocab_size)
|
213 |
+
next_token_scores = nn.functional.log_softmax(next_token_logits, dim=-1) # (batch_size, vocab_size)
|
214 |
+
next_token_scores = self.logits_wraper(pre_input_ids, next_token_scores)
|
215 |
+
sorted_scores, sorted_indices = torch.sort(next_token_scores, descending=True)
|
216 |
+
chosen_indices = torch.masked_select(sorted_indices, sorted_scores != -float("Inf")).tolist()
|
217 |
+
# 当候选token数只有1个且不为终止eos_token_id时直接一步转移
|
218 |
+
while len(chosen_indices) == 1:
|
219 |
+
self.new_token_cnt += 1
|
220 |
+
self.gen_info["gen_token_cnt"] += 1
|
221 |
+
self.generate_ids.append(chosen_indices[0])
|
222 |
+
if chosen_indices[0] == self.tokenizer.eos_token_id or self.new_token_cnt >= self.max_new_token:
|
223 |
+
end_of_generate = True
|
224 |
+
return end_of_generate, None
|
225 |
+
else:
|
226 |
+
pre_input_ids, last_outputs = self.one_step_transfer(pre_input_ids,
|
227 |
+
past_key_values=last_outputs.past_key_values,
|
228 |
+
new_token_id=torch.LongTensor(
|
229 |
+
[[chosen_indices[0]]]))
|
230 |
+
self.curr_input_ids = pre_input_ids
|
231 |
+
|
232 |
+
next_token_logits = last_outputs.logits[:, -1, :].clone() # (batch_size, vocab_size)
|
233 |
+
next_token_scores = nn.functional.log_softmax(next_token_logits, dim=-1) # (batch_size, vocab_size)
|
234 |
+
next_token_scores = self.logits_wraper(pre_input_ids, next_token_scores)
|
235 |
+
sorted_scores, sorted_indices = torch.sort(next_token_scores, descending=True)
|
236 |
+
chosen_indices = torch.masked_select(sorted_indices, sorted_scores != -float("Inf")).tolist()
|
237 |
+
|
238 |
+
attention_mask = torch.ones_like(pre_input_ids)
|
239 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
|
240 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
241 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
242 |
+
position_id = position_ids[:, -1:].to(self.model_device)
|
243 |
+
# log.info("len(chosen_indices):{}".format(len(chosen_indices)))
|
244 |
+
self.chosen_indices = chosen_indices
|
245 |
+
self.cand_chosen_idx = 0
|
246 |
+
self.attention_mask = attention_mask
|
247 |
+
self.position_id = position_id
|
248 |
+
self.last_outputs = last_outputs
|
249 |
+
return end_of_generate, chosen_indices
|
250 |
+
else:
|
251 |
+
new_token_id = torch.LongTensor([[self.chosen_indices[self.cand_chosen_idx]]])
|
252 |
+
curr_next_output = self.base_model(input_ids=new_token_id.to(self.model_device),
|
253 |
+
attention_mask=self.attention_mask.to(self.model_device),
|
254 |
+
position_ids=self.position_id.to(self.model_device),
|
255 |
+
past_key_values=self.last_outputs.past_key_values,
|
256 |
+
output_hidden_states=True)
|
257 |
+
self.cand_chosen_idx += 1
|
258 |
+
return False, curr_next_output
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
agent_path = "../proxy_rlhf/train_result/multi_reward/mistral_v3_2_1/run2/trained_model/actor_11000.pth"
|
263 |
+
base_model_path = "/mnt/public/model/huggingface/Mistral-7B-Instruct-v0.3"
|
264 |
+
proxy_generator = MARAGenerator(agent_path, base_model_path)
|
265 |
+
instruction = "Please introduce yourself."
|
266 |
+
raw_result = proxy_generator.get_raw_output(instruction, do_sample=False)
|
267 |
+
print("base model answer: ")
|
268 |
+
print(raw_result["answer"])
|
269 |
+
proxy_result = proxy_generator.get_proxy_output(instruction)
|
270 |
+
print("mara agent align answer: ")
|
271 |
+
print(proxy_result["answer"])
|