English
GretaYY commited on
Commit
7897a8b
·
verified ·
1 Parent(s): 30d8ec1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -18,7 +18,7 @@ language:
18
  ---
19
 
20
  <h1 align="center">
21
- <img src="./assets/icons.png" alt="MARA Icon" width="45" height="45"/> MARA AGENTS
22
  </h1>
23
  <div style="display: flex; justify-content: center; gap: 10px;">
24
  <a href="https://github.com/IAAR-Shanghai/MARA">
@@ -32,7 +32,7 @@ language:
32
 
33
  **MARA** (Micro token-level Accept-Reject Alignment) simplifies the alignment process by breaking down sentence-level preference learning into fine-grained token-level binary classification. The MARA agent—a lightweight multi-layer perceptron (MLP)—operates as an alignment model that evaluates and classifies each candidate token as either *Accepted* or *Rejected* during LLM text generation.
34
  <figure>
35
- <img src="./assets/mara_architecture.png" alt="mara_architecture" style="display: block; margin: 0 auto;" />
36
  <figcaption style="text-align: center;">Architecture of MARA: The alignment model performs token selection through accept-reject decisions.</figcaption>
37
  </figure>
38
 
@@ -64,7 +64,7 @@ The source code and implementation details are open-sourced at [MARA](https://gi
64
  <table class="center">
65
  <tr>
66
  <td width=100% style="border: none">
67
- <img src="assets/table1.png" style="width:50%; max-width:100%;">
68
  <div style="text-align: left; margin-top: 8px;">Performance improvements of MARA across PKUSafeRLHF, BeaverTails, and HarmfulQA datasets. Each entry shows the percentage improvement in preference rate achieved by applying MARA compared to using the original LLM alone.</div>
69
  </td>
70
  </tr>
@@ -72,7 +72,7 @@ The source code and implementation details are open-sourced at [MARA](https://gi
72
  <table class="center">
73
  <tr>
74
  <td width=100% style="border: none">
75
- <img src="assets/table3.png" style="width:50%; max-width:100%;">
76
  <div style="text-align: left; margin-top: 8px;">Compatibility analysis of MARA, an alignment model trained with a LLM to be aggregate with other inference LLM. The value of each cell represents the percentage improvement in preference rate of our algorithm over the upstream model, i.e., inference model.</div>
77
  </td>
78
  </tr>
@@ -81,7 +81,7 @@ The source code and implementation details are open-sourced at [MARA](https://gi
81
  <table class="center">
82
  <tr>
83
  <td width=100% style="border: none">
84
- <img src="assets/table2.png" style="width:100%">
85
  <div style="text-align: left; margin-top: 8px;">Performance comparison of MARA against RLHF, DPO, and Aligner measured by percentage improvements of preference rate.</div>
86
  </td>
87
  </tr>
 
18
  ---
19
 
20
  <h1 align="center">
21
+ <img src="icons.png" alt="MARA Icon" width="45" height="45"/> MARA AGENTS
22
  </h1>
23
  <div style="display: flex; justify-content: center; gap: 10px;">
24
  <a href="https://github.com/IAAR-Shanghai/MARA">
 
32
 
33
  **MARA** (Micro token-level Accept-Reject Alignment) simplifies the alignment process by breaking down sentence-level preference learning into fine-grained token-level binary classification. The MARA agent—a lightweight multi-layer perceptron (MLP)—operates as an alignment model that evaluates and classifies each candidate token as either *Accepted* or *Rejected* during LLM text generation.
34
  <figure>
35
+ <img src="mara_architecture.png" alt="mara_architecture" style="display: block; margin: 0 auto;" />
36
  <figcaption style="text-align: center;">Architecture of MARA: The alignment model performs token selection through accept-reject decisions.</figcaption>
37
  </figure>
38
 
 
64
  <table class="center">
65
  <tr>
66
  <td width=100% style="border: none">
67
+ <img src="table1.png" style="width:50%; max-width:100%;">
68
  <div style="text-align: left; margin-top: 8px;">Performance improvements of MARA across PKUSafeRLHF, BeaverTails, and HarmfulQA datasets. Each entry shows the percentage improvement in preference rate achieved by applying MARA compared to using the original LLM alone.</div>
69
  </td>
70
  </tr>
 
72
  <table class="center">
73
  <tr>
74
  <td width=100% style="border: none">
75
+ <img src="table3.png" style="width:50%; max-width:100%;">
76
  <div style="text-align: left; margin-top: 8px;">Compatibility analysis of MARA, an alignment model trained with a LLM to be aggregate with other inference LLM. The value of each cell represents the percentage improvement in preference rate of our algorithm over the upstream model, i.e., inference model.</div>
77
  </td>
78
  </tr>
 
81
  <table class="center">
82
  <tr>
83
  <td width=100% style="border: none">
84
+ <img src="table2.png" style="width:100%">
85
  <div style="text-align: left; margin-top: 8px;">Performance comparison of MARA against RLHF, DPO, and Aligner measured by percentage improvements of preference rate.</div>
86
  </td>
87
  </tr>