English
MARA_AGENTS / mara_generator.py
GretaYY's picture
Upload mara_generator.py
606f02a verified
import torch
import torch.nn as nn
from loguru import logger as log
from torch.distributions import Categorical
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessorList, TopKLogitsWarper, TopPLogitsWarper, \
TemperatureLogitsWarper
class DiscreteActor(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=1024):
super(DiscreteActor, self).__init__()
self.state_dim = state_dim
self.action_dim = action_dim
self.ln = nn.LayerNorm(state_dim)
self.linear1 = nn.Linear(self.state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, int(hidden_dim / 4))
self.output_linear = nn.Linear(int(hidden_dim / 4), self.action_dim)
def forward(self, state):
state = self.ln(state)
x = torch.relu(self.linear1(state))
x = torch.relu(self.linear2(x))
output = torch.softmax(self.output_linear(x), dim=1)
return output
def sample(self, state):
state = state.unsqueeze(0)
prob = self.forward(state)
distribution = Categorical(torch.Tensor(prob))
sample_action = distribution.sample().unsqueeze(-1).detach()
z = (prob == 0.0).float() * 1e-8
logprob = torch.log(prob + z)
greedy_action = torch.argmax(prob, dim=-1).unsqueeze(-1) # 1d tensor
return sample_action, prob, logprob, greedy_action
def select_action(self, state):
state = state.unsqueeze(0)
prob = self.forward(state)
action = torch.argmax(prob, dim=-1).unsqueeze(-1) # 1d tensor
action = action.squeeze().tolist()
return action
class MARAGenerator():
def __init__(
self,
agent_path, base_model_path, state_dim=4096, hidden_dim=1024, model_device="cuda:0",
max_new_token=2048, topk=40, topp=0.95, temperature=0.8
):
# 文本生成模型初始化
self.base_model_path = base_model_path
self.model_device = torch.device(model_device)
self.base_model = AutoModelForCausalLM.from_pretrained(self.base_model_path).to(
self.model_device).eval().requires_grad_(False)
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_path)
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.topk = topk
self.topp = topp
self.max_new_token = max_new_token
self.temperature = temperature
# instantiate logits processors and wraper
self.logits_wraper = LogitsProcessorList(
[TopKLogitsWarper(self.topk), TopPLogitsWarper(top_p=self.topp),
TemperatureLogitsWarper(self.temperature)])
'''init agent'''
self.mara_agent = self.get_mara_agent(agent_path, state_dim, hidden_dim).to(self.model_device)
# log.info("mara_agent:{}".format(self.mara_agent))
self.instruction = "" # 输入指令
self.generate_ids = [] # 已生成的token
self.new_token_cnt = 0 # 已生成token数
self.curr_input_ids = None # 生成new_token的输入input_id,
self.curr_new_token_ids_list = None # 采样的new_token
self.sum_logprobs = None
self.curr_new_outputs_list = None # 以self.curr_input_ids+curr_new_token_id为输入的模型输出
self.next_new_outputs_list = None # 对应self.curr_new_outputs_list下一个token
self.is_new_token = True
self.chosen_indices = None
self.cand_chosen_idx = 0
self.last_outputs = None
self.attention_mask = None
self.position_id = None
# proxy_detail
self.gen_info = {"gen_token_cnt": 0, # 每个样例生成的结果长度,len(gen_token_cnt_list)=sample_cnt
"proxy_token_cnt": 0, # 需要经过agent进行决策的token长度,len(proxy_token_cnt_listt)=sample_cnt
"cand_token_dict": {}, # 每个决策位的候选token数,1<=cand_token_cnt<=topK,0表示不需要决策
"accept_index_dict": {} # 每个决策位的选择第几个token, accept_idx
}
def get_mara_agent(self, agent_path, state_dim, hidden_dim):
mara_agent = DiscreteActor(state_dim, 2, hidden_dim)
log.info('Begin to load mara agent model from {}'.format(agent_path))
try:
model_state_dict = torch.load(agent_path, map_location=self.model_device)
mara_agent.load_state_dict(model_state_dict)
except Exception as e:
log.error("load mara_agent occur error: {}".format(str(e)))
raise
return mara_agent
def get_input_text(self, instruction):
messages = [{"role": "user", "content": instruction}]
input_text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return input_text
def get_raw_output(self, instruction, do_sample=True):
if do_sample:
generation_config = {"do_sample": True, "max_new_tokens": self.max_new_token, "top_k": self.topk,
"top_p": self.topp, "temperature": self.temperature}
else:
generation_config = {"do_sample": False, "max_new_tokens": self.max_new_token}
input_text = self.get_input_text(instruction)
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model_device)
output_ids = self.base_model.generate(**inputs, **generation_config)[0]
response = self.tokenizer.decode(output_ids[len(inputs.input_ids[0]):], skip_special_tokens=True)
return {"answer": response}
def get_proxy_output(self, instruction):
input_text = self.get_input_text(instruction)
model_inputs = self.tokenizer(input_text, return_tensors="pt").to(self.model_device)
self.new_token_cnt = 0
self.generate_ids = []
self.gen_info = {"gen_token_cnt": 0, # 每个样例生成的结果长度,len(gen_token_cnt_list)=sample_cnt
"mara_token_cnt": 0, # 需要经过agent进行决策的token长度,len(proxy_token_cnt_list)=sample_cnt
"cand_token_dict": {}, # 每个决策位的候选token数,1<=cand_token_cnt<=topK,0表示不需要决策
"accept_index_dict": {} # 每个决策位的选择第几个token, accept_idx
}
input_ids = model_inputs.input_ids
self.attention_mask = model_inputs.attention_mask
self.curr_input_ids = input_ids
self.last_outputs = self.base_model(input_ids=input_ids,
attention_mask=self.attention_mask,
output_hidden_states=True)
# 一个token一个token地进行状态转移
self.is_new_token = True
self.cand_chosen_idx = 0
self.position_id = None
end_of_generate = False
while not end_of_generate:
end_of_generate, self.chosen_indices = self.rank_topk_ouputs_serial(self.curr_input_ids, self.last_outputs)
self.is_new_token = False
if end_of_generate:
break
accept_idx = 0
curr_new_outputs_list = []
for i in range(len(self.chosen_indices)):
_, curr_new_outputs = self.rank_topk_ouputs_serial(self.curr_input_ids, self.last_outputs)
curr_new_outputs_list.append(curr_new_outputs)
curr_state = curr_new_outputs['hidden_states'][-1][0, -1].to(self.model_device)
action = self.mara_agent.select_action(curr_state)
if action == 1:
accept_idx = i
break
self.is_new_token = True
# log.info(
# "new_token_cnt:{}/{}, accept_idx: {}".format(self.new_token_cnt, self.max_new_token, accept_idx))
accept_token_id = self.chosen_indices[accept_idx]
self.generate_ids.append(accept_token_id)
self.new_token_cnt += 1
self.gen_info["gen_token_cnt"] += 1
self.gen_info["mara_token_cnt"] += 1
if len(self.chosen_indices) not in self.gen_info["cand_token_dict"]:
self.gen_info["cand_token_dict"][len(self.chosen_indices)] = 1
else:
self.gen_info["cand_token_dict"][len(self.chosen_indices)] += 1
if accept_idx not in self.gen_info["accept_index_dict"]:
self.gen_info["accept_index_dict"][accept_idx] = 1
else:
self.gen_info["accept_index_dict"][accept_idx] += 1
self.curr_input_ids = torch.cat(
(self.curr_input_ids, torch.LongTensor([[accept_token_id]]).to(self.model_device)), dim=-1)
self.last_outputs = curr_new_outputs_list[accept_idx]
if accept_token_id == self.tokenizer.eos_token_id or self.new_token_cnt >= self.max_new_token:
end_of_generate = True
completion = self.tokenizer.decode(self.generate_ids, skip_special_tokens=True)
return {"answer": completion, "detail": self.gen_info}
def one_step_transfer(self, pre_input_ids, past_key_values, new_token_id):
attention_mask = torch.ones_like(pre_input_ids)
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_id = position_ids[:, -1:].to(self.model_device)
new_token_id = new_token_id.to(self.model_device)
new_outputs = self.base_model(input_ids=new_token_id,
attention_mask=attention_mask.to(self.model_device),
position_ids=position_id,
past_key_values=past_key_values,
output_hidden_states=True)
new_input_ids = torch.cat((pre_input_ids, new_token_id), dim=-1)
return new_input_ids, new_outputs
def rank_topk_ouputs_serial(self, pre_input_ids, last_outputs):
if self.is_new_token:
end_of_generate = False
next_token_logits = last_outputs.logits[:, -1, :].clone() # (batch_size, vocab_size)
next_token_scores = nn.functional.log_softmax(next_token_logits, dim=-1) # (batch_size, vocab_size)
next_token_scores = self.logits_wraper(pre_input_ids, next_token_scores)
sorted_scores, sorted_indices = torch.sort(next_token_scores, descending=True)
chosen_indices = torch.masked_select(sorted_indices, sorted_scores != -float("Inf")).tolist()
# 当候选token数只有1个且不为终止eos_token_id时直接一步转移
while len(chosen_indices) == 1:
self.new_token_cnt += 1
self.gen_info["gen_token_cnt"] += 1
self.generate_ids.append(chosen_indices[0])
if chosen_indices[0] == self.tokenizer.eos_token_id or self.new_token_cnt >= self.max_new_token:
end_of_generate = True
return end_of_generate, None
else:
pre_input_ids, last_outputs = self.one_step_transfer(pre_input_ids,
past_key_values=last_outputs.past_key_values,
new_token_id=torch.LongTensor(
[[chosen_indices[0]]]))
self.curr_input_ids = pre_input_ids
next_token_logits = last_outputs.logits[:, -1, :].clone() # (batch_size, vocab_size)
next_token_scores = nn.functional.log_softmax(next_token_logits, dim=-1) # (batch_size, vocab_size)
next_token_scores = self.logits_wraper(pre_input_ids, next_token_scores)
sorted_scores, sorted_indices = torch.sort(next_token_scores, descending=True)
chosen_indices = torch.masked_select(sorted_indices, sorted_scores != -float("Inf")).tolist()
attention_mask = torch.ones_like(pre_input_ids)
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_id = position_ids[:, -1:].to(self.model_device)
# log.info("len(chosen_indices):{}".format(len(chosen_indices)))
self.chosen_indices = chosen_indices
self.cand_chosen_idx = 0
self.attention_mask = attention_mask
self.position_id = position_id
self.last_outputs = last_outputs
return end_of_generate, chosen_indices
else:
new_token_id = torch.LongTensor([[self.chosen_indices[self.cand_chosen_idx]]])
curr_next_output = self.base_model(input_ids=new_token_id.to(self.model_device),
attention_mask=self.attention_mask.to(self.model_device),
position_ids=self.position_id.to(self.model_device),
past_key_values=self.last_outputs.past_key_values,
output_hidden_states=True)
self.cand_chosen_idx += 1
return False, curr_next_output
if __name__ == "__main__":
agent_path = "../proxy_rlhf/train_result/multi_reward/mistral_v3_2_1/run2/trained_model/actor_11000.pth"
base_model_path = "/mnt/public/model/huggingface/Mistral-7B-Instruct-v0.3"
proxy_generator = MARAGenerator(agent_path, base_model_path)
instruction = "Please introduce yourself."
raw_result = proxy_generator.get_raw_output(instruction, do_sample=False)
print("base model answer: ")
print(raw_result["answer"])
proxy_result = proxy_generator.get_proxy_output(instruction)
print("mara agent align answer: ")
print(proxy_result["answer"])