Huertas97's picture
Update way of installing the model to be used
0a7b0a5 verified
metadata
tags:
  - spacy
  - token-classification
language:
  - multilingual
model-index:
  - name: xx_LeetSpeakNER_mstsb_mpnet
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.912373549
          - name: NER Recall
            type: recall
            value: 0.9160452962
          - name: NER F Score
            type: f_score
            value: 0.9142057358
Feature Description
Name xx_LeetSpeakNER_mstsb_mpnet
Version 0.0.0
spaCy >=3.4.3,<3.5.0
Default Pipeline transformer, ner
Components transformer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License n/a
Author n/a

Usage

### UPDATE INSTALLATION WITH PACKAGE NAME
!pip install "xx_LeetSpeakNER_mstsb_mpnet @ https://huggingface.co/Huertas97/xx_LeetSpeakNER_mstsb_mpnet/resolve/main/xx_LeetSpeakNER_mstsb_mpnet-any-py3-none-any.whl"

# Using spacy.load().
import spacy
nlp = spacy.load("xx_LeetSpeakNER_mstsb_mpnet")

# Importing as module.
import xx_LeetSpeakNER_mstsb_mpnet
nlp = xx_LeetSpeakNER_mstsb_mpnet.load()

Label Scheme

View label scheme (4 labels for 1 components)
Component Labels
ner INV_CAMO, LEETSPEAK, MIX, PUNCT_CAMO

Accuracy

Type Score
ENTS_F 91.42
ENTS_P 91.24
ENTS_R 91.60
TRANSFORMER_LOSS 396910.59
NER_LOSS 373097.06