File size: 1,571 Bytes
9a78c99 0a7b0a5 9a78c99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
tags:
- spacy
- token-classification
language:
- multilingual
model-index:
- name: xx_LeetSpeakNER_mstsb_mpnet
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.912373549
- name: NER Recall
type: recall
value: 0.9160452962
- name: NER F Score
type: f_score
value: 0.9142057358
---
| Feature | Description |
| --- | --- |
| **Name** | `xx_LeetSpeakNER_mstsb_mpnet` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.4.3,<3.5.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Usage
```python
### UPDATE INSTALLATION WITH PACKAGE NAME
!pip install "xx_LeetSpeakNER_mstsb_mpnet @ https://huggingface.co/Huertas97/xx_LeetSpeakNER_mstsb_mpnet/resolve/main/xx_LeetSpeakNER_mstsb_mpnet-any-py3-none-any.whl"
# Using spacy.load().
import spacy
nlp = spacy.load("xx_LeetSpeakNER_mstsb_mpnet")
# Importing as module.
import xx_LeetSpeakNER_mstsb_mpnet
nlp = xx_LeetSpeakNER_mstsb_mpnet.load()
```
### Label Scheme
<details>
<summary>View label scheme (4 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `INV_CAMO`, `LEETSPEAK`, `MIX`, `PUNCT_CAMO` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 91.42 |
| `ENTS_P` | 91.24 |
| `ENTS_R` | 91.60 |
| `TRANSFORMER_LOSS` | 396910.59 |
| `NER_LOSS` | 373097.06 | |