HERIUN's picture
End of training
cfda683 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - audio-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec-bert-korean-dialect-recognition
    results: []

wav2vec-bert-korean-dialect-recognition

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6935
  • Accuracy: 0.7453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1772 1.0 32734 0.9692 0.6393
1.1915 2.0 65468 0.8570 0.6765
1.198 3.0 98202 0.7810 0.7097
1.2072 4.0 130936 0.7748 0.7121
1.2897 5.0 163670 0.7394 0.7252
1.206 6.0 196404 0.7457 0.7196
1.0204 7.0 229138 0.7299 0.7273
1.1207 8.0 261872 0.7225 0.7330
1.3417 9.0 294606 0.6936 0.7450
1.1021 10.0 327340 0.7014 0.7415

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0