wav2vec-bert-korean-dialect-recognition

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1634
  • Accuracy: 0.5646
  • Precision: 0.5686
  • Recall: 0.5646
  • F1: 0.5531

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
1.757 0.0356 1000 0.1934 0.1444 1.8080 0.3630 0.1934
1.7207 0.0711 2000 0.1858 0.1167 1.8231 0.4510 0.1858
1.7191 0.1067 3000 0.2319 0.1956 1.7802 0.3031 0.2319
1.6801 0.1422 4000 0.2710 0.2483 1.7571 0.3163 0.2710
1.6729 0.1778 5000 0.316 0.3071 1.7127 0.3274 0.316
1.6273 0.2133 6000 0.2663 0.2278 1.7038 0.3393 0.2663
1.638 0.2489 7000 0.3340 0.2975 1.6556 0.3365 0.3340
1.6088 0.2844 8000 0.3467 0.3030 1.6232 0.3529 0.3467
1.6045 0.32 9000 0.3678 0.3467 1.6154 0.3719 0.3678
1.5529 0.3889 10000 0.3898 0.3557 1.5715 0.3820 0.3898
1.5729 0.4278 11000 0.3882 0.3649 1.5619 0.4034 0.3882
1.5647 0.4667 12000 0.4043 0.3773 1.5250 0.4066 0.4043
1.5344 0.5056 13000 0.4231 0.3957 1.5101 0.4251 0.4231
1.558 0.5445 14000 0.4288 0.4052 1.4953 0.4249 0.4288
1.5119 0.5834 15000 0.4318 0.4108 1.4901 0.4326 0.4318
1.53 0.6223 16000 0.4374 0.4203 1.4725 0.4316 0.4374
1.5029 0.6611 17000 0.4375 0.4130 1.4610 0.4317 0.4375
1.5406 0.7000 18000 0.4470 0.4341 1.4421 0.4589 0.4470
1.4774 0.7389 19000 0.4537 0.4282 1.4335 0.4697 0.4537
1.5911 0.7778 20000 0.4617 0.4440 1.4154 0.4506 0.4617
1.5075 0.8167 21000 0.4367 0.4043 1.4382 0.4717 0.4367
1.4361 0.8556 22000 0.4542 0.4433 1.4165 0.4565 0.4542
1.5074 0.8945 23000 0.4397 0.4216 1.4402 0.4570 0.4397
1.5422 0.9334 24000 0.4324 0.4164 1.4387 0.4636 0.4324
1.504 0.9723 25000 0.4691 0.4573 1.3951 0.4829 0.4691
1.589 1.0112 26000 0.4568 0.4396 1.4080 0.4792 0.4568
1.5463 1.0501 27000 0.4763 0.4612 1.3758 0.4912 0.4763
1.5442 1.0889 28000 0.4810 0.4603 1.3749 0.5010 0.4810
1.5678 1.1278 29000 0.4821 0.4679 1.3573 0.4898 0.4821
1.4957 1.1667 30000 0.4773 0.4531 1.3754 0.4864 0.4773
1.4619 1.2056 31000 0.4583 0.4333 1.4045 0.4852 0.4583
1.5267 1.2445 32000 0.4830 0.4659 1.3626 0.4797 0.4830
1.4861 1.2834 33000 0.4753 0.4560 1.3709 0.4818 0.4753
1.532 1.3223 34000 0.4689 0.4318 1.3816 0.4647 0.4689
1.5705 1.3612 35000 0.4840 0.4597 1.3663 0.4826 0.4840
1.4912 1.4001 36000 0.4854 0.4635 1.3536 0.4973 0.4854
1.4966 1.4390 37000 0.4909 0.4702 1.3497 0.4884 0.4909
1.4327 1.4779 38000 0.4800 0.4685 1.3592 0.4885 0.4800
1.5454 1.5167 39000 0.5042 0.4773 1.3186 0.5126 0.5042
1.4842 1.5556 40000 0.5018 0.4860 1.3254 0.5038 0.5018
1.4606 1.5945 41000 0.4928 0.4627 1.3411 0.5006 0.4928
1.4117 1.6334 42000 0.5009 0.4915 1.3106 0.5220 0.5009
1.4794 1.6723 43000 0.5002 0.4821 1.3182 0.5228 0.5002
1.5223 1.7112 44000 0.5027 0.4897 1.3102 0.5135 0.5027
1.5187 1.7501 45000 0.5134 0.4991 1.2922 0.5090 0.5134
1.6064 1.7890 46000 0.5105 0.4938 1.2987 0.5039 0.5105
1.5322 1.8279 47000 0.5081 0.4831 1.3015 0.4997 0.5081
1.4831 1.8668 48000 0.4918 0.4704 1.3280 0.5077 0.4918
1.4726 1.9057 49000 0.5011 0.4822 1.3042 0.5145 0.5011
1.5298 1.9445 50000 0.5162 0.5028 1.2816 0.5206 0.5162
1.559 1.9834 51000 0.5133 0.4969 1.2905 0.5131 0.5133
1.5835 2.0223 52000 0.5198 0.5097 1.2741 0.5248 0.5198
1.5087 2.0612 53000 0.5125 0.5040 1.2828 0.5206 0.5125
1.4915 2.1001 54000 0.5115 0.4952 1.2897 0.5185 0.5115
1.482 2.1390 55000 0.5138 0.5024 1.2792 0.5219 0.5138
1.5485 2.1779 56000 0.5181 0.5036 1.2789 0.5282 0.5181
1.5636 2.2168 57000 0.5151 0.5005 1.2838 0.5257 0.5151
1.4106 2.2557 58000 0.5132 0.4920 1.2850 0.5161 0.5132
1.4449 2.2946 59000 0.503 0.4772 1.3000 0.5147 0.503
1.4786 2.3335 60000 0.5203 0.5043 1.2671 0.5432 0.5203
1.4684 2.3723 61000 0.5206 0.5091 1.2671 0.5356 0.5206
1.4268 2.4112 62000 0.5223 0.5089 1.2658 0.5269 0.5223
1.4774 2.4501 63000 0.5296 0.5181 1.2524 0.5371 0.5296
1.4325 2.4890 64000 0.5202 0.5059 1.2673 0.5250 0.5202
1.5087 2.5279 65000 0.4971 0.4755 1.3084 0.5250 0.4971
1.4453 2.5668 66000 0.5123 0.5017 1.2858 0.5276 0.5123
1.476 2.6057 67000 0.5233 0.5089 1.2626 0.5223 0.5233
1.4795 2.6446 68000 0.5159 0.4972 1.2777 0.5278 0.5159
1.4468 2.6835 69000 0.5299 0.5126 1.2504 0.5283 0.5299
1.4137 2.7224 70000 0.5290 0.5176 1.2511 0.5377 0.5289
1.5105 2.7612 71000 0.5383 0.5298 1.2342 0.5430 0.5383
1.4906 2.8001 72000 0.5271 0.5137 1.2550 0.5295 0.5271
1.4464 2.8390 73000 0.5273 0.5118 1.2512 0.5384 0.5273
1.6306 2.8779 74000 0.5300 0.5160 1.2466 0.5320 0.5300
1.4965 2.9168 75000 0.5222 0.5078 1.2595 0.5358 0.5222
1.4079 2.9557 76000 0.5227 0.5092 1.2536 0.5231 0.5227
1.448 2.9946 77000 0.5230 0.4991 1.2700 0.5295 0.5230
1.6561 3.0335 78000 0.5348 0.5200 1.2381 0.5237 0.5348
1.5103 3.0724 79000 0.5334 0.5216 1.2393 0.5451 0.5334
1.5148 3.1113 80000 0.5307 0.5091 1.2489 0.5474 0.5307
1.4129 3.1502 81000 0.5379 0.5238 1.2319 0.5292 0.5379
1.6654 3.1890 82000 0.5335 0.5165 1.2415 0.5372 0.5335
1.4226 3.2279 83000 0.5336 0.5210 1.2343 0.5478 0.5336
1.3913 3.2668 84000 0.5381 0.5251 1.2317 0.5344 0.5381
1.4628 3.3057 85000 0.5240 0.5142 1.2496 0.5327 0.5240
1.3775 3.3446 86000 0.5305 0.5159 1.2400 0.5383 0.5305
1.4292 3.3835 87000 0.5140 0.4945 1.2727 0.5329 0.5140
1.5157 3.4224 88000 0.5243 0.5146 1.2419 0.5502 0.5243
1.4581 3.4613 89000 0.5318 0.5245 1.2296 0.5524 0.5318
1.3873 3.5002 90000 0.5314 0.5211 1.2380 0.5436 0.5314
1.425 3.5391 91000 0.5371 0.5242 1.2300 0.5420 0.5371
1.4202 3.5780 92000 0.5430 0.5282 1.2211 0.5475 0.5430
1.4748 3.6168 93000 0.5407 0.5273 1.2256 0.5422 0.5407
1.4289 3.6557 94000 0.5351 0.5230 1.2293 0.5426 0.5351
1.4312 3.6946 95000 0.5405 0.5314 1.2180 0.5483 0.5405
1.4342 3.7335 96000 0.5256 0.5085 1.2435 0.5420 0.5256
1.8241 3.7724 97000 0.5335 0.5138 1.2389 0.5384 0.5335
1.4589 3.8113 98000 0.5222 0.5070 1.2484 0.5458 0.5222
1.4884 3.8502 99000 0.5231 0.4996 1.2610 0.5311 0.5231
1.5725 3.8891 100000 0.5468 0.5383 1.2074 0.5456 0.5468
1.4603 3.9280 101000 0.5409 0.5261 1.2154 0.5471 0.5409
1.4581 3.9669 102000 0.5365 0.5221 1.2234 0.5352 0.5365
1.5738 4.0058 103000 0.5339 0.5205 1.2247 0.5445 0.5339
1.593 4.0446 104000 0.5210 0.5067 1.2527 0.5370 0.5210
1.4523 4.0835 105000 0.5456 0.5261 1.2102 0.5411 0.5456
1.5537 4.1224 106000 0.5341 0.5155 1.2337 0.5334 0.5341
1.4931 4.1613 107000 0.5437 0.5336 1.2114 0.5461 0.5437
1.4286 4.2002 108000 0.5153 0.4956 1.2611 0.5458 0.5153
1.3667 4.2391 109000 0.5439 0.5301 1.2108 0.5463 0.5439
1.4723 4.2780 110000 0.5312 0.5213 1.2269 0.5497 0.5312
1.3852 4.3169 111000 0.5452 0.5290 1.2128 0.5488 0.5452
1.489 4.3558 112000 0.5419 0.5310 1.2094 0.5471 0.5419
1.4598 4.3947 113000 0.5356 0.5246 1.2183 0.5418 0.5356
1.5491 4.4336 114000 0.5438 0.5372 1.2062 0.5535 0.5438
1.3628 4.4724 115000 0.5381 0.5281 1.2204 0.5430 0.5381
1.5225 4.5113 116000 0.5362 0.5289 1.2174 0.5573 0.5362
1.4036 4.5502 117000 0.5440 0.5316 1.2084 0.5547 0.5440
1.4956 4.5891 118000 0.5319 0.5173 1.2280 0.5358 0.5318
1.3991 4.6280 119000 0.5453 0.5338 1.2046 0.5494 0.5453
1.5407 4.6669 120000 0.5428 0.5289 1.2093 0.5503 0.5428
1.5033 4.7058 121000 0.5403 0.5237 1.2122 0.5630 0.5403
1.5966 4.7447 122000 0.5536 0.5462 1.1886 0.5590 0.5536
1.637 2.3918 123000 0.5389 0.5157 1.2282 0.5438 0.5389
1.5217 2.4113 124000 0.5488 0.5427 1.2010 0.5442 0.5488
1.6031 2.4307 125000 0.5400 0.5277 1.2237 0.5371 0.5400
1.4542 2.4502 126000 0.5434 0.5308 1.2101 0.5586 0.5434
1.5071 2.4696 127000 0.5429 0.5279 1.2116 0.5501 0.5429
1.5437 2.4891 128000 0.5383 0.5256 1.2150 0.5487 0.5383
1.4489 2.5085 129000 0.5129 0.5063 1.2566 0.5528 0.5129
1.5495 2.5280 130000 0.5532 0.5427 1.1922 0.5581 0.5532
1.4348 2.5474 131000 0.5432 0.5375 1.2032 0.5510 0.5432
1.4554 2.5668 132000 0.5383 0.5252 1.2144 0.5638 0.5383
1.4183 2.5863 133000 0.5335 0.5256 1.2202 0.5482 0.5335
1.4754 2.6057 134000 0.5470 0.5437 1.1988 0.5537 0.5470
1.5864 2.6252 135000 0.5426 0.5348 1.2015 0.5414 0.5426
1.3715 2.6446 136000 0.5287 0.5136 1.2306 0.5495 0.5287
1.3886 2.6641 137000 0.5445 0.5323 1.2043 0.5478 0.5445
1.4509 2.6835 138000 0.5438 0.5276 1.2045 0.5602 0.5438
1.4868 2.7030 139000 0.5233 0.5097 1.2468 0.5385 0.5233
1.4345 2.7224 140000 0.5456 0.5312 1.2123 0.5404 0.5456
1.3935 2.7419 141000 0.5441 0.5321 1.2061 0.5428 0.5441
1.5243 2.7613 142000 0.5530 0.5402 1.1959 0.5437 0.5530
1.5884 2.8196 145000 0.5519 0.5430 1.1936 0.5581 0.5519
1.4449 2.9169 150000 0.5288 0.5164 1.2338 0.5527 0.5288
1.4557 3.0141 155000 0.5561 0.5428 1.1910 0.5568 0.5561
1.6852 3.1113 160000 0.5564 0.5497 1.1852 0.5597 0.5564
1.4623 3.2086 165000 0.5598 0.5557 1.1777 0.5623 0.5598
1.4993 3.3058 170000 1.2342 0.5299 0.5362 0.5299 0.5146
1.466 3.4030 175000 1.1878 0.5499 0.5656 0.5499 0.5471
1.409 3.5002 180000 1.2197 0.5333 0.5568 0.5333 0.5278
1.4949 3.5975 185000 1.1775 0.5617 0.5611 0.5618 0.5408
1.4764 3.6947 190000 1.2087 0.5430 0.5455 0.5430 0.5266
1.4751 3.7919 195000 1.2000 0.5462 0.5690 0.5462 0.5353
1.5135 3.8892 200000 1.2028 0.5468 0.5500 0.5468 0.5348
1.3999 3.9864 205000 1.1762 0.5622 0.5630 0.5622 0.5517
1.4685 4.0836 210000 1.1819 0.5550 0.5632 0.5550 0.5405
1.4338 4.1808 215000 1.1992 0.5498 0.5569 0.5498 0.5354
1.6445 4.2781 220000 1.2039 0.5424 0.5603 0.5424 0.5297
1.4788 4.3753 225000 1.1930 0.5549 0.5525 0.5549 0.5458
1.3937 4.4725 230000 1.1762 0.5571 0.5552 0.5571 0.5509
1.3932 4.5698 235000 1.2016 0.5471 0.5523 0.5471 0.5338
1.5177 4.6670 240000 1.1786 0.5577 0.5666 0.5577 0.5449
1.5508 4.7642 245000 1.1772 0.5540 0.5826 0.5540 0.5521
1.4184 4.8614 250000 1.1773 0.5581 0.5682 0.5581 0.5455
1.5349 4.9587 255000 1.1828 0.5581 0.5663 0.5581 0.5440
1.4414 5.0559 260000 1.1804 0.5536 0.5699 0.5536 0.5437
1.4374 5.1531 265000 1.1910 0.5525 0.5576 0.5525 0.5356
1.4101 5.2504 270000 1.1854 0.5548 0.5648 0.5548 0.5427
1.6934 5.3476 275000 1.2125 0.5399 0.5599 0.5399 0.5184
1.4133 5.4448 280000 1.1745 0.5591 0.5694 0.5591 0.5487
1.5981 5.5421 285000 1.2078 0.5391 0.5644 0.5391 0.5317
1.4194 5.6393 290000 1.1834 0.5507 0.5654 0.5507 0.5414
1.5619 5.7365 295000 1.1951 0.5485 0.5685 0.5485 0.5356
1.4517 5.8337 300000 1.1835 0.5570 0.5696 0.5570 0.5360
1.5457 5.9310 305000 1.1635 0.5617 0.5738 0.5618 0.5530
1.4769 6.0282 310000 1.1636 0.5633 0.5670 0.5633 0.5565
1.3975 6.1254 315000 1.1785 0.5596 0.5684 0.5596 0.5443
1.6069 6.2227 320000 1.1685 0.5634 0.5632 0.5634 0.5541
1.3608 6.3199 325000 1.1589 0.5673 0.5600 0.5673 0.5581
1.5021 6.4171 330000 1.1799 0.5576 0.5561 0.5576 0.5435
1.6022 6.5143 335000 1.1722 0.5617 0.5579 0.5617 0.5504
1.5354 6.6116 340000 1.1631 0.5644 0.5668 0.5644 0.5541
1.4264 6.7088 345000 1.1693 0.5626 0.5640 0.5626 0.5484
1.5207 6.8060 350000 1.1781 0.5583 0.5668 0.5583 0.5401
1.441 6.9033 355000 1.1746 0.5581 0.5666 0.5581 0.5496
1.33 7.0005 360000 1.1605 0.5677 0.5721 0.5677 0.5574
1.5886 7.0977 365000 1.1649 0.5657 0.5711 0.5657 0.5523
1.5005 7.1949 370000 1.1872 0.5523 0.5644 0.5523 0.5384
1.4685 7.2922 375000 1.1735 0.5607 0.5671 0.5607 0.5451
1.373 7.3894 380000 1.1597 0.5652 0.5726 0.5652 0.5557
1.5504 7.4866 385000 1.1803 0.5518 0.5732 0.5518 0.5413
1.4173 7.5839 390000 1.1709 0.5601 0.5660 0.5601 0.5455
1.4251 7.6811 395000 1.1607 0.5674 0.5710 0.5674 0.5574
1.6129 7.7783 400000 1.1831 0.5530 0.5610 0.5530 0.5418
1.4331 7.8755 405000 1.1715 0.5626 0.5645 0.5626 0.5488
1.5966 7.9728 410000 1.1825 0.5592 0.5623 0.5592 0.5411
1.3413 8.0700 415000 1.1705 0.5585 0.5687 0.5585 0.5486
1.3785 8.1672 420000 1.1576 0.5692 0.5656 0.5692 0.5568
1.5491 8.2645 425000 1.1627 0.5665 0.5671 0.5665 0.5515
1.3878 8.3617 430000 1.1688 0.5607 0.5712 0.5607 0.5497
1.415 8.4589 435000 1.1801 0.5546 0.5650 0.5546 0.5423
1.3973 8.5561 440000 1.1650 0.5612 0.5712 0.5612 0.5538
1.3801 8.6534 445000 1.1671 0.5655 0.5665 0.5655 0.5525
1.4631 8.7506 450000 1.1839 0.5552 0.5631 0.5552 0.5414
1.4076 8.8478 455000 1.1725 0.5604 0.5668 0.5604 0.5452
1.6888 8.9451 460000 1.1622 0.5642 0.5732 0.5642 0.5533
1.4282 9.0423 465000 1.1566 0.5682 0.5726 0.5682 0.5579
1.4833 9.1395 470000 1.1658 0.5635 0.5725 0.5635 0.5526
1.5365 9.2368 475000 1.1589 0.5684 0.5687 0.5684 0.5567
1.3789 9.3340 480000 1.1688 0.5616 0.5678 0.5616 0.5489
1.3586 9.4312 485000 1.1796 0.5547 0.5646 0.5547 0.5427
1.4582 9.5284 490000 1.1725 0.5606 0.5635 0.5606 0.5485
1.439 9.6257 495000 1.1643 0.5649 0.5700 0.5650 0.5534
1.4671 9.7229 500000 1.1688 0.5617 0.5667 0.5617 0.5495
1.4149 9.8201 505000 1.1640 0.5652 0.5662 0.5652 0.5535
1.5227 9.9174 510000 1.1634 0.5646 0.5686 0.5646 0.5531

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.21.0
Downloads last month
37
Safetensors
Model size
581M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for HERIUN/wav2vec-bert-korean-dialect-recognition

Finetuned
(251)
this model