Gummybear05's picture
Upload tokenizer
261e12d verified
---
base_model: facebook/wav2vec2-xls-r-1b
library_name: transformers
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-E10_freq_speed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-1b-E10_freq_speed
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7340
- Cer: 19.0026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 11.3207 | 0.2580 | 200 | 3.4053 | 86.8891 |
| 1.8939 | 0.5160 | 400 | 1.8047 | 41.0303 |
| 1.1854 | 0.7741 | 600 | 1.4651 | 34.3691 |
| 0.9917 | 1.0321 | 800 | 1.0588 | 25.9516 |
| 0.744 | 1.2901 | 1000 | 1.1790 | 27.6962 |
| 0.6919 | 1.5481 | 1200 | 1.0604 | 25.9927 |
| 0.6347 | 1.8062 | 1400 | 0.9300 | 22.9323 |
| 0.5428 | 2.0642 | 1600 | 0.9996 | 24.9648 |
| 0.4724 | 2.3222 | 1800 | 0.9695 | 23.8252 |
| 0.4267 | 2.5802 | 2000 | 0.9463 | 23.7606 |
| 0.4096 | 2.8383 | 2200 | 0.8589 | 22.4448 |
| 0.3507 | 3.0963 | 2400 | 0.8145 | 20.7707 |
| 0.2874 | 3.3543 | 2600 | 0.8739 | 22.6856 |
| 0.2767 | 3.6123 | 2800 | 0.8657 | 21.8280 |
| 0.2663 | 3.8703 | 3000 | 0.8732 | 22.0630 |
| 0.2196 | 4.1284 | 3200 | 0.7671 | 19.4843 |
| 0.1867 | 4.3864 | 3400 | 0.7652 | 19.7016 |
| 0.1685 | 4.6444 | 3600 | 0.7288 | 18.7559 |
| 0.1677 | 4.9024 | 3800 | 0.7340 | 19.0026 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1