File size: 2,656 Bytes
9acbcb3
261e12d
9acbcb3
4db1380
 
 
 
 
 
9acbcb3
 
4db1380
 
9acbcb3
4db1380
9acbcb3
4db1380
 
 
 
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
9acbcb3
4db1380
 
 
 
 
 
 
 
 
 
 
 
9acbcb3
4db1380
9acbcb3
4db1380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acbcb3
 
4db1380
9acbcb3
4db1380
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model: facebook/wav2vec2-xls-r-1b
library_name: transformers
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-E10_freq_speed
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-1b-E10_freq_speed

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7340
- Cer: 19.0026

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 11.3207       | 0.2580 | 200  | 3.4053          | 86.8891 |
| 1.8939        | 0.5160 | 400  | 1.8047          | 41.0303 |
| 1.1854        | 0.7741 | 600  | 1.4651          | 34.3691 |
| 0.9917        | 1.0321 | 800  | 1.0588          | 25.9516 |
| 0.744         | 1.2901 | 1000 | 1.1790          | 27.6962 |
| 0.6919        | 1.5481 | 1200 | 1.0604          | 25.9927 |
| 0.6347        | 1.8062 | 1400 | 0.9300          | 22.9323 |
| 0.5428        | 2.0642 | 1600 | 0.9996          | 24.9648 |
| 0.4724        | 2.3222 | 1800 | 0.9695          | 23.8252 |
| 0.4267        | 2.5802 | 2000 | 0.9463          | 23.7606 |
| 0.4096        | 2.8383 | 2200 | 0.8589          | 22.4448 |
| 0.3507        | 3.0963 | 2400 | 0.8145          | 20.7707 |
| 0.2874        | 3.3543 | 2600 | 0.8739          | 22.6856 |
| 0.2767        | 3.6123 | 2800 | 0.8657          | 21.8280 |
| 0.2663        | 3.8703 | 3000 | 0.8732          | 22.0630 |
| 0.2196        | 4.1284 | 3200 | 0.7671          | 19.4843 |
| 0.1867        | 4.3864 | 3400 | 0.7652          | 19.7016 |
| 0.1685        | 4.6444 | 3600 | 0.7288          | 18.7559 |
| 0.1677        | 4.9024 | 3800 | 0.7340          | 19.0026 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1