metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1473
- loss:CosineSimilarityLoss
base_model: sergeyzh/rubert-mini-frida
widget:
- source_sentence: А если я ИП или самозанятый, получу ли я софинансирование по ПДС?
sentences:
- >-
Возможны программы 'Ипотека без ПВ под залог имеющегося жилья' или
'Нецелевой кредит под залог'.
- В чем разница между именной и моментальной кредитной картой?
- Да, ИП и самозанятые могут получать софинансирование по ПДС.
- source_sentence: >-
При расторжении договора ПДС сроком до 2 лет возвращается 100% внесенных
средств.
sentences:
- Софинансирование по ПДС зависит от дохода...
- >-
Софинансирование по ПДС — это возможность получить финансовую поддержку
от государства на личные взносы.
- >-
При расторжении договора ПДС сроком от 2 до 7 лет возвращается 100%
внесенных средств и 100% дохода от инвестирования.
- source_sentence: >-
Страхование жизни и здоровья (Лайф) при ипотеке добровольное, но отказ
может повлиять на ставку.
sentences:
- >-
При выполнении определенных условий, участник ПДС имеет право на возврат
подоходного налога до 88 000 рублей ежегодно...
- >-
В каких случаях необходимо нотариальное согласие супруга на передачу
недвижимости в залог по ипотечному договору?
- >-
Оформление полиса страхования жизни и здоровья для ипотеки является
добровольным, однако отказ от него может отразиться на процентной
ставке.
- source_sentence: >-
Какие возможности есть для оплаты кредитной картой Сбера через Apple Pay
или Google Pay?
sentences:
- Что представляет собой ипотека?
- >-
Кредитная карта Сбера выпускается на пластике международной платежной
системы МИР.
- >-
Случаи применения двухвизитной схемы ипотечной сделки включают Военную
ипотеку, объекты в залоге, нотариально удостоверяемые сделки, операции
по доверенности, с участием нерезидентов, с предоставлением иного
залога, а также ИЖС с использованием эскроу-счетов...
- source_sentence: Что такое минимальная гарантированная ставка по вкладу?
sentences:
- >-
Нужно ли предоставлять документы о доходах при оформлении ипотеки по
программе 'Отказ от финансовых документов'?
- >-
Допускается ли внесение средств на счет ПДС с банковской карты,
принадлежащей другому лицу?
- >-
Минимальная гарантированная ставка указывается на первой странице
договора вклада и определяет минимальный доход при хранении вклада до
конца срока.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sergeyzh/rubert-mini-frida
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: binary sts validation
type: binary-sts-validation
metrics:
- type: cosine_accuracy
value: 0.8157181571815718
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6679937839508057
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8382978723404255
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5157450437545776
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7519083969465649
name: Cosine Precision
- type: cosine_recall
value: 0.9471153846153846
name: Cosine Recall
- type: cosine_ap
value: 0.8755934249907517
name: Cosine Ap
- type: cosine_mcc
value: 0.5938990835056142
name: Cosine Mcc
SentenceTransformer based on sergeyzh/rubert-mini-frida
This is a sentence-transformers model finetuned from sergeyzh/rubert-mini-frida. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sergeyzh/rubert-mini-frida
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 312 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("George2002/duplicates_checker_v1")
# Run inference
sentences = [
'Что такое минимальная гарантированная ставка по вкладу?',
'Минимальная гарантированная ставка указывается на первой странице договора вклада и определяет минимальный доход при хранении вклада до конца срока.',
'Допускается ли внесение средств на счет ПДС с банковской карты, принадлежащей другому лицу?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
binary-sts-validation
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8157 |
cosine_accuracy_threshold | 0.668 |
cosine_f1 | 0.8383 |
cosine_f1_threshold | 0.5157 |
cosine_precision | 0.7519 |
cosine_recall | 0.9471 |
cosine_ap | 0.8756 |
cosine_mcc | 0.5939 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,473 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 19.16 tokens
- max: 58 tokens
- min: 7 tokens
- mean: 21.22 tokens
- max: 66 tokens
- 0: ~42.40%
- 1: ~57.60%
- Samples:
sentence1 sentence2 label Какие средства не подлежат списанию по исполнительным документам?
Как погасить кредит, если счет арестован?
0
В случае изменения реквизитов необходимо сообщить в Фонд не позднее 7 дней...
В случае изменения реквизитов необходимо сообщить в Фонд не позднее 10 дней...
0
Как активировать карту Сбера, чтобы начать ей пользоваться?
После получения кредитной карты никаких дополнительных действий совершать не требуется, можно сразу ей пользоваться.
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 369 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 369 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 18.25 tokens
- max: 47 tokens
- min: 7 tokens
- mean: 20.62 tokens
- max: 61 tokens
- 0: ~43.63%
- 1: ~56.37%
- Samples:
sentence1 sentence2 label Можно ли забрать деньги из программы долгосрочного сбережения ПДС?
Да, можно при достижении оснований (15 лет, возраст 55/60, особые ситуации) или досрочно согласно таблице выкупных сумм.
1
Минимальный взнос после вступления в программу ПДС (на этапе накопления) - 1 000 рублей.
Минимальный взнос после вступления в программу ПДС (на этапе накопления) - 1 500 рублей.
0
Закрыть вклад или счет можно в СберБанк Онлайн или в офисе Сбера; при досрочном закрытии срочного вклада теряются проценты.
Прекратить действие вклада или счета можно через интернет-банк СберБанк Онлайн либо в отделении банка; в случае досрочного закрытия срочного вклада начисленные проценты аннулируются.
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 5e-06num_train_epochs
: 10warmup_ratio
: 0.1load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | binary-sts-validation_cosine_ap |
---|---|---|---|---|
0.2553 | 12 | 0.217 | - | - |
0.5106 | 24 | 0.22 | - | - |
0.7660 | 36 | 0.1985 | - | - |
1.0213 | 48 | 0.2037 | - | - |
1.0638 | 50 | - | 0.2223 | 0.7656 |
1.2766 | 60 | 0.205 | - | - |
1.5319 | 72 | 0.1976 | - | - |
1.7872 | 84 | 0.2051 | - | - |
2.0426 | 96 | 0.1796 | - | - |
2.1277 | 100 | - | 0.2085 | 0.8037 |
2.2979 | 108 | 0.1993 | - | - |
2.5532 | 120 | 0.188 | - | - |
2.8085 | 132 | 0.1925 | - | - |
3.0638 | 144 | 0.2108 | - | - |
3.1915 | 150 | - | 0.1975 | 0.8317 |
3.3191 | 156 | 0.1852 | - | - |
3.5745 | 168 | 0.1796 | - | - |
3.8298 | 180 | 0.1981 | - | - |
4.0851 | 192 | 0.1917 | - | - |
4.2553 | 200 | - | 0.1880 | 0.8486 |
4.3404 | 204 | 0.192 | - | - |
4.5957 | 216 | 0.1955 | - | - |
4.8511 | 228 | 0.1688 | - | - |
5.1064 | 240 | 0.1741 | - | - |
5.3191 | 250 | - | 0.1799 | 0.8625 |
5.3617 | 252 | 0.1762 | - | - |
5.6170 | 264 | 0.1796 | - | - |
5.8723 | 276 | 0.1786 | - | - |
6.1277 | 288 | 0.177 | - | - |
6.3830 | 300 | 0.1738 | 0.1739 | 0.8686 |
6.6383 | 312 | 0.1826 | - | - |
6.8936 | 324 | 0.1599 | - | - |
7.1489 | 336 | 0.1844 | - | - |
7.4043 | 348 | 0.1747 | - | - |
7.4468 | 350 | - | 0.1702 | 0.8730 |
7.6596 | 360 | 0.1742 | - | - |
7.9149 | 372 | 0.1663 | - | - |
8.1702 | 384 | 0.1658 | - | - |
8.4255 | 396 | 0.1623 | - | - |
8.5106 | 400 | - | 0.1676 | 0.8756 |
Framework Versions
- Python: 3.11.2
- Sentence Transformers: 4.1.0
- Transformers: 4.49.0
- PyTorch: 2.5.1
- Accelerate: 1.5.2
- Datasets: 3.5.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}