Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +489 -0
- config.json +26 -0
- config_sentence_transformers.json +36 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 312,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:1473
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: sergeyzh/rubert-mini-frida
|
10 |
+
widget:
|
11 |
+
- source_sentence: А если я ИП или самозанятый, получу ли я софинансирование по ПДС?
|
12 |
+
sentences:
|
13 |
+
- Возможны программы 'Ипотека без ПВ под залог имеющегося жилья' или 'Нецелевой
|
14 |
+
кредит под залог'.
|
15 |
+
- В чем разница между именной и моментальной кредитной картой?
|
16 |
+
- Да, ИП и самозанятые могут получать софинансирование по ПДС.
|
17 |
+
- source_sentence: При расторжении договора ПДС сроком до 2 лет возвращается 100%
|
18 |
+
внесенных средств.
|
19 |
+
sentences:
|
20 |
+
- Софинансирование по ПДС зависит от дохода...
|
21 |
+
- Софинансирование по ПДС — это возможность получить финансовую поддержку от государства
|
22 |
+
на личные взносы.
|
23 |
+
- При расторжении договора ПДС сроком от 2 до 7 лет возвращается 100% внесенных
|
24 |
+
средств и 100% дохода от инвестирования.
|
25 |
+
- source_sentence: Страхование жизни и здоровья (Лайф) при ипотеке добровольное, но
|
26 |
+
отказ может повлиять на ставку.
|
27 |
+
sentences:
|
28 |
+
- При выполнении определенных условий, участник ПДС имеет право на возврат подоходного
|
29 |
+
налога до 88 000 рублей ежегодно...
|
30 |
+
- В каких случаях необходимо нотариальное согласие супруга на передачу недвижимости
|
31 |
+
в залог по ипотечному договору?
|
32 |
+
- Оформление полиса страхования жизни и здоровья для ипотеки является добровольным,
|
33 |
+
однако отказ от него может отразиться на процентной ставке.
|
34 |
+
- source_sentence: Какие возможности есть для оплаты кредитной картой Сбера через
|
35 |
+
Apple Pay или Google Pay?
|
36 |
+
sentences:
|
37 |
+
- Что представляет собой ипотека?
|
38 |
+
- Кредитная карта Сбера выпускается на пластике международной платежной системы
|
39 |
+
МИР.
|
40 |
+
- Случаи применения двухвизитной схемы ипотечной сделки включают Военную ипотеку,
|
41 |
+
объекты в залоге, нотариально удостоверяемые сделки, операции по доверенности,
|
42 |
+
с участием нерезидентов, с предоставлением иного залога, а также ИЖС с использованием
|
43 |
+
эскроу-счетов...
|
44 |
+
- source_sentence: Что такое минимальная гарантированная ставка по вкладу?
|
45 |
+
sentences:
|
46 |
+
- Нужно ли предоставлять документы о доходах при оформлении ипотеки по программе
|
47 |
+
'Отказ от финансовых документов'?
|
48 |
+
- Допускается ли внесение средств на счет ПДС с банковской карты, принадлежащей
|
49 |
+
другому лицу?
|
50 |
+
- Минимальная гарантированная ставка указывается на первой странице договора вклада
|
51 |
+
и определяет минимальный доход при хранении вклада до конца срока.
|
52 |
+
pipeline_tag: sentence-similarity
|
53 |
+
library_name: sentence-transformers
|
54 |
+
metrics:
|
55 |
+
- cosine_accuracy
|
56 |
+
- cosine_accuracy_threshold
|
57 |
+
- cosine_f1
|
58 |
+
- cosine_f1_threshold
|
59 |
+
- cosine_precision
|
60 |
+
- cosine_recall
|
61 |
+
- cosine_ap
|
62 |
+
- cosine_mcc
|
63 |
+
model-index:
|
64 |
+
- name: SentenceTransformer based on sergeyzh/rubert-mini-frida
|
65 |
+
results:
|
66 |
+
- task:
|
67 |
+
type: binary-classification
|
68 |
+
name: Binary Classification
|
69 |
+
dataset:
|
70 |
+
name: binary sts validation
|
71 |
+
type: binary-sts-validation
|
72 |
+
metrics:
|
73 |
+
- type: cosine_accuracy
|
74 |
+
value: 0.8157181571815718
|
75 |
+
name: Cosine Accuracy
|
76 |
+
- type: cosine_accuracy_threshold
|
77 |
+
value: 0.6679937839508057
|
78 |
+
name: Cosine Accuracy Threshold
|
79 |
+
- type: cosine_f1
|
80 |
+
value: 0.8382978723404255
|
81 |
+
name: Cosine F1
|
82 |
+
- type: cosine_f1_threshold
|
83 |
+
value: 0.5157450437545776
|
84 |
+
name: Cosine F1 Threshold
|
85 |
+
- type: cosine_precision
|
86 |
+
value: 0.7519083969465649
|
87 |
+
name: Cosine Precision
|
88 |
+
- type: cosine_recall
|
89 |
+
value: 0.9471153846153846
|
90 |
+
name: Cosine Recall
|
91 |
+
- type: cosine_ap
|
92 |
+
value: 0.8755934249907517
|
93 |
+
name: Cosine Ap
|
94 |
+
- type: cosine_mcc
|
95 |
+
value: 0.5938990835056142
|
96 |
+
name: Cosine Mcc
|
97 |
+
---
|
98 |
+
|
99 |
+
# SentenceTransformer based on sergeyzh/rubert-mini-frida
|
100 |
+
|
101 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sergeyzh/rubert-mini-frida](https://huggingface.co/sergeyzh/rubert-mini-frida). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
102 |
+
|
103 |
+
## Model Details
|
104 |
+
|
105 |
+
### Model Description
|
106 |
+
- **Model Type:** Sentence Transformer
|
107 |
+
- **Base model:** [sergeyzh/rubert-mini-frida](https://huggingface.co/sergeyzh/rubert-mini-frida) <!-- at revision 32a82388a9f99c99eca74494731f7ee6e9a9fe3a -->
|
108 |
+
- **Maximum Sequence Length:** 2048 tokens
|
109 |
+
- **Output Dimensionality:** 312 dimensions
|
110 |
+
- **Similarity Function:** Cosine Similarity
|
111 |
+
<!-- - **Training Dataset:** Unknown -->
|
112 |
+
<!-- - **Language:** Unknown -->
|
113 |
+
<!-- - **License:** Unknown -->
|
114 |
+
|
115 |
+
### Model Sources
|
116 |
+
|
117 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
118 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
119 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
120 |
+
|
121 |
+
### Full Model Architecture
|
122 |
+
|
123 |
+
```
|
124 |
+
SentenceTransformer(
|
125 |
+
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
|
126 |
+
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
127 |
+
(2): Normalize()
|
128 |
+
)
|
129 |
+
```
|
130 |
+
|
131 |
+
## Usage
|
132 |
+
|
133 |
+
### Direct Usage (Sentence Transformers)
|
134 |
+
|
135 |
+
First install the Sentence Transformers library:
|
136 |
+
|
137 |
+
```bash
|
138 |
+
pip install -U sentence-transformers
|
139 |
+
```
|
140 |
+
|
141 |
+
Then you can load this model and run inference.
|
142 |
+
```python
|
143 |
+
from sentence_transformers import SentenceTransformer
|
144 |
+
|
145 |
+
# Download from the 🤗 Hub
|
146 |
+
model = SentenceTransformer("George2002/duplicates_checker_v1")
|
147 |
+
# Run inference
|
148 |
+
sentences = [
|
149 |
+
'Что такое минимальная гарантированная ставка по вкладу?',
|
150 |
+
'Минимальная гарантированная ставка указывается на первой странице договора вклада и определяет минимальный доход при хранении вклада до конца срока.',
|
151 |
+
'Допускается ли внесение средств на счет ПДС с банковской карты, принадлежащей другому лицу?',
|
152 |
+
]
|
153 |
+
embeddings = model.encode(sentences)
|
154 |
+
print(embeddings.shape)
|
155 |
+
# [3, 312]
|
156 |
+
|
157 |
+
# Get the similarity scores for the embeddings
|
158 |
+
similarities = model.similarity(embeddings, embeddings)
|
159 |
+
print(similarities.shape)
|
160 |
+
# [3, 3]
|
161 |
+
```
|
162 |
+
|
163 |
+
<!--
|
164 |
+
### Direct Usage (Transformers)
|
165 |
+
|
166 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
167 |
+
|
168 |
+
</details>
|
169 |
+
-->
|
170 |
+
|
171 |
+
<!--
|
172 |
+
### Downstream Usage (Sentence Transformers)
|
173 |
+
|
174 |
+
You can finetune this model on your own dataset.
|
175 |
+
|
176 |
+
<details><summary>Click to expand</summary>
|
177 |
+
|
178 |
+
</details>
|
179 |
+
-->
|
180 |
+
|
181 |
+
<!--
|
182 |
+
### Out-of-Scope Use
|
183 |
+
|
184 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
185 |
+
-->
|
186 |
+
|
187 |
+
## Evaluation
|
188 |
+
|
189 |
+
### Metrics
|
190 |
+
|
191 |
+
#### Binary Classification
|
192 |
+
|
193 |
+
* Dataset: `binary-sts-validation`
|
194 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
195 |
+
|
196 |
+
| Metric | Value |
|
197 |
+
|:--------------------------|:-----------|
|
198 |
+
| cosine_accuracy | 0.8157 |
|
199 |
+
| cosine_accuracy_threshold | 0.668 |
|
200 |
+
| cosine_f1 | 0.8383 |
|
201 |
+
| cosine_f1_threshold | 0.5157 |
|
202 |
+
| cosine_precision | 0.7519 |
|
203 |
+
| cosine_recall | 0.9471 |
|
204 |
+
| **cosine_ap** | **0.8756** |
|
205 |
+
| cosine_mcc | 0.5939 |
|
206 |
+
|
207 |
+
<!--
|
208 |
+
## Bias, Risks and Limitations
|
209 |
+
|
210 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
211 |
+
-->
|
212 |
+
|
213 |
+
<!--
|
214 |
+
### Recommendations
|
215 |
+
|
216 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
217 |
+
-->
|
218 |
+
|
219 |
+
## Training Details
|
220 |
+
|
221 |
+
### Training Dataset
|
222 |
+
|
223 |
+
#### Unnamed Dataset
|
224 |
+
|
225 |
+
* Size: 1,473 training samples
|
226 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
227 |
+
* Approximate statistics based on the first 1000 samples:
|
228 |
+
| | sentence1 | sentence2 | label |
|
229 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
230 |
+
| type | string | string | int |
|
231 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 19.16 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.22 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>0: ~42.40%</li><li>1: ~57.60%</li></ul> |
|
232 |
+
* Samples:
|
233 |
+
| sentence1 | sentence2 | label |
|
234 |
+
|:-------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
235 |
+
| <code>Какие средства не подлежат списанию по исполнительным документам?</code> | <code>Как погасить кредит, если счет арестован?</code> | <code>0</code> |
|
236 |
+
| <code>В случае изменения реквизитов необходимо сообщить в Фонд не позднее 7 дней...</code> | <code>В случае изменения реквизитов необходимо сообщить в Фонд не позднее 10 дней...</code> | <code>0</code> |
|
237 |
+
| <code>Как активировать карту Сбера, чтобы начать ей пользоваться?</code> | <code>После получения кредитной карты никаких дополнительных действий совершать не требуется, можно сразу ей пользоваться.</code> | <code>1</code> |
|
238 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
239 |
+
```json
|
240 |
+
{
|
241 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
242 |
+
}
|
243 |
+
```
|
244 |
+
|
245 |
+
### Evaluation Dataset
|
246 |
+
|
247 |
+
#### Unnamed Dataset
|
248 |
+
|
249 |
+
* Size: 369 evaluation samples
|
250 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
251 |
+
* Approximate statistics based on the first 369 samples:
|
252 |
+
| | sentence1 | sentence2 | label |
|
253 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
254 |
+
| type | string | string | int |
|
255 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.62 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>0: ~43.63%</li><li>1: ~56.37%</li></ul> |
|
256 |
+
* Samples:
|
257 |
+
| sentence1 | sentence2 | label |
|
258 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
259 |
+
| <code>Можно ли забрать деньги из программы долгосрочного сбережения ПДС?</code> | <code>Да, можно при достижении оснований (15 лет, возраст 55/60, особые ситуации) или досрочно согласно таблице выкупных сумм.</code> | <code>1</code> |
|
260 |
+
| <code>Минимальный взнос после вступле��ия в программу ПДС (на этапе накопления) - 1 000 рублей.</code> | <code>Минимальный взнос после вступления в программу ПДС (на этапе накопления) - 1 500 рублей.</code> | <code>0</code> |
|
261 |
+
| <code>Закрыть вклад или счет можно в СберБанк Онлайн или в офисе Сбера; при досрочном закрытии срочного вклада теряются проценты.</code> | <code>Прекратить действие вклада или счета можно через интернет-банк СберБанк Онлайн либо в отделении банка; в случае досрочного закрытия срочного вклада начисленные проценты аннулируются.</code> | <code>1</code> |
|
262 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
263 |
+
```json
|
264 |
+
{
|
265 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
266 |
+
}
|
267 |
+
```
|
268 |
+
|
269 |
+
### Training Hyperparameters
|
270 |
+
#### Non-Default Hyperparameters
|
271 |
+
|
272 |
+
- `eval_strategy`: steps
|
273 |
+
- `per_device_train_batch_size`: 32
|
274 |
+
- `per_device_eval_batch_size`: 16
|
275 |
+
- `learning_rate`: 5e-06
|
276 |
+
- `num_train_epochs`: 10
|
277 |
+
- `warmup_ratio`: 0.1
|
278 |
+
- `load_best_model_at_end`: True
|
279 |
+
- `batch_sampler`: no_duplicates
|
280 |
+
|
281 |
+
#### All Hyperparameters
|
282 |
+
<details><summary>Click to expand</summary>
|
283 |
+
|
284 |
+
- `overwrite_output_dir`: False
|
285 |
+
- `do_predict`: False
|
286 |
+
- `eval_strategy`: steps
|
287 |
+
- `prediction_loss_only`: True
|
288 |
+
- `per_device_train_batch_size`: 32
|
289 |
+
- `per_device_eval_batch_size`: 16
|
290 |
+
- `per_gpu_train_batch_size`: None
|
291 |
+
- `per_gpu_eval_batch_size`: None
|
292 |
+
- `gradient_accumulation_steps`: 1
|
293 |
+
- `eval_accumulation_steps`: None
|
294 |
+
- `torch_empty_cache_steps`: None
|
295 |
+
- `learning_rate`: 5e-06
|
296 |
+
- `weight_decay`: 0.0
|
297 |
+
- `adam_beta1`: 0.9
|
298 |
+
- `adam_beta2`: 0.999
|
299 |
+
- `adam_epsilon`: 1e-08
|
300 |
+
- `max_grad_norm`: 1.0
|
301 |
+
- `num_train_epochs`: 10
|
302 |
+
- `max_steps`: -1
|
303 |
+
- `lr_scheduler_type`: linear
|
304 |
+
- `lr_scheduler_kwargs`: {}
|
305 |
+
- `warmup_ratio`: 0.1
|
306 |
+
- `warmup_steps`: 0
|
307 |
+
- `log_level`: passive
|
308 |
+
- `log_level_replica`: warning
|
309 |
+
- `log_on_each_node`: True
|
310 |
+
- `logging_nan_inf_filter`: True
|
311 |
+
- `save_safetensors`: True
|
312 |
+
- `save_on_each_node`: False
|
313 |
+
- `save_only_model`: False
|
314 |
+
- `restore_callback_states_from_checkpoint`: False
|
315 |
+
- `no_cuda`: False
|
316 |
+
- `use_cpu`: False
|
317 |
+
- `use_mps_device`: False
|
318 |
+
- `seed`: 42
|
319 |
+
- `data_seed`: None
|
320 |
+
- `jit_mode_eval`: False
|
321 |
+
- `use_ipex`: False
|
322 |
+
- `bf16`: False
|
323 |
+
- `fp16`: False
|
324 |
+
- `fp16_opt_level`: O1
|
325 |
+
- `half_precision_backend`: auto
|
326 |
+
- `bf16_full_eval`: False
|
327 |
+
- `fp16_full_eval`: False
|
328 |
+
- `tf32`: None
|
329 |
+
- `local_rank`: 0
|
330 |
+
- `ddp_backend`: None
|
331 |
+
- `tpu_num_cores`: None
|
332 |
+
- `tpu_metrics_debug`: False
|
333 |
+
- `debug`: []
|
334 |
+
- `dataloader_drop_last`: False
|
335 |
+
- `dataloader_num_workers`: 0
|
336 |
+
- `dataloader_prefetch_factor`: None
|
337 |
+
- `past_index`: -1
|
338 |
+
- `disable_tqdm`: False
|
339 |
+
- `remove_unused_columns`: True
|
340 |
+
- `label_names`: None
|
341 |
+
- `load_best_model_at_end`: True
|
342 |
+
- `ignore_data_skip`: False
|
343 |
+
- `fsdp`: []
|
344 |
+
- `fsdp_min_num_params`: 0
|
345 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
346 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
347 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
348 |
+
- `deepspeed`: None
|
349 |
+
- `label_smoothing_factor`: 0.0
|
350 |
+
- `optim`: adamw_torch
|
351 |
+
- `optim_args`: None
|
352 |
+
- `adafactor`: False
|
353 |
+
- `group_by_length`: False
|
354 |
+
- `length_column_name`: length
|
355 |
+
- `ddp_find_unused_parameters`: None
|
356 |
+
- `ddp_bucket_cap_mb`: None
|
357 |
+
- `ddp_broadcast_buffers`: False
|
358 |
+
- `dataloader_pin_memory`: True
|
359 |
+
- `dataloader_persistent_workers`: False
|
360 |
+
- `skip_memory_metrics`: True
|
361 |
+
- `use_legacy_prediction_loop`: False
|
362 |
+
- `push_to_hub`: False
|
363 |
+
- `resume_from_checkpoint`: None
|
364 |
+
- `hub_model_id`: None
|
365 |
+
- `hub_strategy`: every_save
|
366 |
+
- `hub_private_repo`: None
|
367 |
+
- `hub_always_push`: False
|
368 |
+
- `gradient_checkpointing`: False
|
369 |
+
- `gradient_checkpointing_kwargs`: None
|
370 |
+
- `include_inputs_for_metrics`: False
|
371 |
+
- `include_for_metrics`: []
|
372 |
+
- `eval_do_concat_batches`: True
|
373 |
+
- `fp16_backend`: auto
|
374 |
+
- `push_to_hub_model_id`: None
|
375 |
+
- `push_to_hub_organization`: None
|
376 |
+
- `mp_parameters`:
|
377 |
+
- `auto_find_batch_size`: False
|
378 |
+
- `full_determinism`: False
|
379 |
+
- `torchdynamo`: None
|
380 |
+
- `ray_scope`: last
|
381 |
+
- `ddp_timeout`: 1800
|
382 |
+
- `torch_compile`: False
|
383 |
+
- `torch_compile_backend`: None
|
384 |
+
- `torch_compile_mode`: None
|
385 |
+
- `dispatch_batches`: None
|
386 |
+
- `split_batches`: None
|
387 |
+
- `include_tokens_per_second`: False
|
388 |
+
- `include_num_input_tokens_seen`: False
|
389 |
+
- `neftune_noise_alpha`: None
|
390 |
+
- `optim_target_modules`: None
|
391 |
+
- `batch_eval_metrics`: False
|
392 |
+
- `eval_on_start`: False
|
393 |
+
- `use_liger_kernel`: False
|
394 |
+
- `eval_use_gather_object`: False
|
395 |
+
- `average_tokens_across_devices`: False
|
396 |
+
- `prompts`: None
|
397 |
+
- `batch_sampler`: no_duplicates
|
398 |
+
- `multi_dataset_batch_sampler`: proportional
|
399 |
+
|
400 |
+
</details>
|
401 |
+
|
402 |
+
### Training Logs
|
403 |
+
| Epoch | Step | Training Loss | Validation Loss | binary-sts-validation_cosine_ap |
|
404 |
+
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|
|
405 |
+
| 0.2553 | 12 | 0.217 | - | - |
|
406 |
+
| 0.5106 | 24 | 0.22 | - | - |
|
407 |
+
| 0.7660 | 36 | 0.1985 | - | - |
|
408 |
+
| 1.0213 | 48 | 0.2037 | - | - |
|
409 |
+
| 1.0638 | 50 | - | 0.2223 | 0.7656 |
|
410 |
+
| 1.2766 | 60 | 0.205 | - | - |
|
411 |
+
| 1.5319 | 72 | 0.1976 | - | - |
|
412 |
+
| 1.7872 | 84 | 0.2051 | - | - |
|
413 |
+
| 2.0426 | 96 | 0.1796 | - | - |
|
414 |
+
| 2.1277 | 100 | - | 0.2085 | 0.8037 |
|
415 |
+
| 2.2979 | 108 | 0.1993 | - | - |
|
416 |
+
| 2.5532 | 120 | 0.188 | - | - |
|
417 |
+
| 2.8085 | 132 | 0.1925 | - | - |
|
418 |
+
| 3.0638 | 144 | 0.2108 | - | - |
|
419 |
+
| 3.1915 | 150 | - | 0.1975 | 0.8317 |
|
420 |
+
| 3.3191 | 156 | 0.1852 | - | - |
|
421 |
+
| 3.5745 | 168 | 0.1796 | - | - |
|
422 |
+
| 3.8298 | 180 | 0.1981 | - | - |
|
423 |
+
| 4.0851 | 192 | 0.1917 | - | - |
|
424 |
+
| 4.2553 | 200 | - | 0.1880 | 0.8486 |
|
425 |
+
| 4.3404 | 204 | 0.192 | - | - |
|
426 |
+
| 4.5957 | 216 | 0.1955 | - | - |
|
427 |
+
| 4.8511 | 228 | 0.1688 | - | - |
|
428 |
+
| 5.1064 | 240 | 0.1741 | - | - |
|
429 |
+
| 5.3191 | 250 | - | 0.1799 | 0.8625 |
|
430 |
+
| 5.3617 | 252 | 0.1762 | - | - |
|
431 |
+
| 5.6170 | 264 | 0.1796 | - | - |
|
432 |
+
| 5.8723 | 276 | 0.1786 | - | - |
|
433 |
+
| 6.1277 | 288 | 0.177 | - | - |
|
434 |
+
| 6.3830 | 300 | 0.1738 | 0.1739 | 0.8686 |
|
435 |
+
| 6.6383 | 312 | 0.1826 | - | - |
|
436 |
+
| 6.8936 | 324 | 0.1599 | - | - |
|
437 |
+
| 7.1489 | 336 | 0.1844 | - | - |
|
438 |
+
| 7.4043 | 348 | 0.1747 | - | - |
|
439 |
+
| 7.4468 | 350 | - | 0.1702 | 0.8730 |
|
440 |
+
| 7.6596 | 360 | 0.1742 | - | - |
|
441 |
+
| 7.9149 | 372 | 0.1663 | - | - |
|
442 |
+
| 8.1702 | 384 | 0.1658 | - | - |
|
443 |
+
| 8.4255 | 396 | 0.1623 | - | - |
|
444 |
+
| 8.5106 | 400 | - | 0.1676 | 0.8756 |
|
445 |
+
|
446 |
+
|
447 |
+
### Framework Versions
|
448 |
+
- Python: 3.11.2
|
449 |
+
- Sentence Transformers: 4.1.0
|
450 |
+
- Transformers: 4.49.0
|
451 |
+
- PyTorch: 2.5.1
|
452 |
+
- Accelerate: 1.5.2
|
453 |
+
- Datasets: 3.5.1
|
454 |
+
- Tokenizers: 0.21.0
|
455 |
+
|
456 |
+
## Citation
|
457 |
+
|
458 |
+
### BibTeX
|
459 |
+
|
460 |
+
#### Sentence Transformers
|
461 |
+
```bibtex
|
462 |
+
@inproceedings{reimers-2019-sentence-bert,
|
463 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
464 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
465 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
466 |
+
month = "11",
|
467 |
+
year = "2019",
|
468 |
+
publisher = "Association for Computational Linguistics",
|
469 |
+
url = "https://arxiv.org/abs/1908.10084",
|
470 |
+
}
|
471 |
+
```
|
472 |
+
|
473 |
+
<!--
|
474 |
+
## Glossary
|
475 |
+
|
476 |
+
*Clearly define terms in order to be accessible across audiences.*
|
477 |
+
-->
|
478 |
+
|
479 |
+
<!--
|
480 |
+
## Model Card Authors
|
481 |
+
|
482 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
483 |
+
-->
|
484 |
+
|
485 |
+
<!--
|
486 |
+
## Model Card Contact
|
487 |
+
|
488 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
489 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"emb_size": 312,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 312,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 600,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 7,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.50.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 83828
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.50.0",
|
5 |
+
"pytorch": "2.5.1"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "search_query: ",
|
9 |
+
"passage": "search_document: ",
|
10 |
+
"CEDRClassification": "categorize_sentiment: ",
|
11 |
+
"GeoreviewClassification": "categorize_entailment: ",
|
12 |
+
"GeoreviewClusteringP2P": "paraphrase: ",
|
13 |
+
"HeadlineClassification": "categorize_topic: ",
|
14 |
+
"InappropriatenessClassification": "categorize_topic: ",
|
15 |
+
"KinopoiskClassification": "categorize_sentiment: ",
|
16 |
+
"MassiveIntentClassification": "categorize_entailment: ",
|
17 |
+
"MassiveScenarioClassification": "categorize_entailment: ",
|
18 |
+
"RuReviewsClassification": "categorize_entailment: ",
|
19 |
+
"RUParaPhraserSTS": "paraphrase: ",
|
20 |
+
"RuSTSBenchmarkSTS": "search_query: ",
|
21 |
+
"STS22": "paraphrase: ",
|
22 |
+
"RuSciBenchGRNTIClassification": "categorize_topic: ",
|
23 |
+
"RuSciBenchGRNTIClusteringP2P": "categorize_topic: ",
|
24 |
+
"RuSciBenchOECDClassification": "categorize_topic: ",
|
25 |
+
"RuSciBenchOECDClusteringP2P": "categorize_topic: ",
|
26 |
+
"SensitiveTopicsClassification": "categorize_topic: ",
|
27 |
+
"TERRa": "categorize_entailment: ",
|
28 |
+
"Classification": "categorize: ",
|
29 |
+
"MultilabelClassification": "categorize: ",
|
30 |
+
"Clustering": "categorize: ",
|
31 |
+
"PairClassification": "categorize: ",
|
32 |
+
"STS": "paraphrase: "
|
33 |
+
},
|
34 |
+
"default_prompt_name": "Classification",
|
35 |
+
"similarity_fn_name": "cosine"
|
36 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74bf28342e14b2f718b79832d649d10503b2adc6240485361bd87dae484cb69a
|
3 |
+
size 129063328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 2048,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 2048,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|