Arihant Tripathi
Fine tuned gating network for domain classification.
189ffdb verified
---
library_name: transformers
license: other
base_model: Qwen/Qwen1.5-1.8B
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: gating_network_qwen_1.5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gating_network_qwen_1.5
This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0545
- Accuracy: 0.9883
- F1: 0.9876
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.311 | 0.0252 | 500 | 0.2788 | 0.9236 | 0.9216 |
| 0.2235 | 0.0503 | 1000 | 0.1763 | 0.9604 | 0.9591 |
| 0.1546 | 0.0755 | 1500 | 0.1805 | 0.9694 | 0.9692 |
| 0.1278 | 0.1006 | 2000 | 0.1261 | 0.9784 | 0.9779 |
| 0.0893 | 0.1258 | 2500 | 0.1286 | 0.9784 | 0.9788 |
| 0.0652 | 0.1510 | 3000 | 0.1357 | 0.9793 | 0.9787 |
| 0.0706 | 0.1761 | 3500 | 0.0899 | 0.9865 | 0.9864 |
| 0.0551 | 0.2013 | 4000 | 0.1000 | 0.9856 | 0.9849 |
| 0.0508 | 0.2264 | 4500 | 0.0662 | 0.9865 | 0.9859 |
| 0.0757 | 0.2516 | 5000 | 0.0883 | 0.9847 | 0.9840 |
| 0.0611 | 0.2768 | 5500 | 0.1417 | 0.9802 | 0.9797 |
| 0.0432 | 0.3019 | 6000 | 0.0545 | 0.9883 | 0.9876 |
| 0.0459 | 0.3271 | 6500 | 0.0732 | 0.9874 | 0.9870 |
| 0.0597 | 0.3522 | 7000 | 0.0711 | 0.9883 | 0.9883 |
| 0.0367 | 0.3774 | 7500 | 0.0742 | 0.9883 | 0.9884 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0