File size: 2,526 Bytes
189ffdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: other
base_model: Qwen/Qwen1.5-1.8B
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: gating_network_qwen_1.5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gating_network_qwen_1.5

This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0545
- Accuracy: 0.9883
- F1: 0.9876

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.311         | 0.0252 | 500  | 0.2788          | 0.9236   | 0.9216 |
| 0.2235        | 0.0503 | 1000 | 0.1763          | 0.9604   | 0.9591 |
| 0.1546        | 0.0755 | 1500 | 0.1805          | 0.9694   | 0.9692 |
| 0.1278        | 0.1006 | 2000 | 0.1261          | 0.9784   | 0.9779 |
| 0.0893        | 0.1258 | 2500 | 0.1286          | 0.9784   | 0.9788 |
| 0.0652        | 0.1510 | 3000 | 0.1357          | 0.9793   | 0.9787 |
| 0.0706        | 0.1761 | 3500 | 0.0899          | 0.9865   | 0.9864 |
| 0.0551        | 0.2013 | 4000 | 0.1000          | 0.9856   | 0.9849 |
| 0.0508        | 0.2264 | 4500 | 0.0662          | 0.9865   | 0.9859 |
| 0.0757        | 0.2516 | 5000 | 0.0883          | 0.9847   | 0.9840 |
| 0.0611        | 0.2768 | 5500 | 0.1417          | 0.9802   | 0.9797 |
| 0.0432        | 0.3019 | 6000 | 0.0545          | 0.9883   | 0.9876 |
| 0.0459        | 0.3271 | 6500 | 0.0732          | 0.9874   | 0.9870 |
| 0.0597        | 0.3522 | 7000 | 0.0711          | 0.9883   | 0.9883 |
| 0.0367        | 0.3774 | 7500 | 0.0742          | 0.9883   | 0.9884 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0