|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:16199
|
|
- loss:CustomBatchAllTripletLoss
|
|
widget:
|
|
- source_sentence: 科目:コンクリート。名称:立上り壁コンクリート。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:棚。
|
|
- 科目:ユニット及びその他。名称:事務室スチールパーティション。
|
|
- 科目:ユニット及びその他。名称:F-R#収納棚。
|
|
- source_sentence: 科目:タイル。名称:段鼻タイル。
|
|
sentences:
|
|
- 科目:タイル。名称:巾木磁器質タイル。
|
|
- 科目:タイル。名称:立上りタイルA。
|
|
- 科目:タイル。名称:アプローチテラス立上り天端床タイルA。
|
|
- source_sentence: 科目:ユニット及びその他。名称:#階F-WC#他パウダーカウンター。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:便所フック(二段)。
|
|
- 科目:ユニット及びその他。名称:テラス床ウッドデッキ。
|
|
- 科目:ユニット及びその他。名称:フラットテラス床ウッドデッキ。
|
|
- source_sentence: 科目:ユニット及びその他。名称:階数表示+停止階案内サイン。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:エレベーターホール入口サイン。
|
|
- 科目:ユニット及びその他。名称:場外離着陸用オイルトラップ。
|
|
- 科目:ユニット及びその他。名称:器材カウンター。
|
|
- source_sentence: 科目:ユニット及びその他。名称:階段内踊場階数サイン。
|
|
sentences:
|
|
- 科目:ユニット及びその他。名称:F-T#布団収納棚。
|
|
- 科目:ユニット及びその他。名称:#F廊下#飾り棚。
|
|
- 科目:ユニット及びその他。名称:F-#階理科室#収納棚。
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
---
|
|
|
|
# SentenceTransformer
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_1")
|
|
# Run inference
|
|
sentences = [
|
|
'科目:ユニット及びその他。名称:階段内踊場階数サイン。',
|
|
'科目:ユニット及びその他。名称:F-#階理科室#収納棚。',
|
|
'科目:ユニット及びその他。名称:F-T#布団収納棚。',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
* Size: 16,199 training samples
|
|
* Columns: <code>sentence</code> and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence | label |
|
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| type | string | int |
|
|
| details | <ul><li>min: 11 tokens</li><li>mean: 18.73 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~2.40%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.40%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.90%</li><li>19: ~0.30%</li><li>20: ~1.30%</li><li>21: ~0.30%</li><li>22: ~1.10%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.30%</li><li>30: ~0.30%</li><li>31: ~0.30%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.40%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.30%</li><li>54: ~0.30%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.60%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.50%</li><li>65: ~0.30%</li><li>66: ~0.30%</li><li>67: ~0.30%</li><li>68: ~0.30%</li><li>69: ~0.50%</li><li>70: ~0.60%</li><li>71: ~0.30%</li><li>72: ~0.30%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.80%</li><li>85: ~0.60%</li><li>86: ~0.50%</li><li>87: ~0.30%</li><li>88: ~0.30%</li><li>89: ~16.30%</li><li>90: ~0.30%</li><li>91: ~0.30%</li><li>92: ~0.30%</li><li>93: ~0.30%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.30%</li><li>97: ~0.30%</li><li>98: ~0.50%</li><li>99: ~0.30%</li><li>100: ~0.30%</li><li>101: ~0.30%</li><li>102: ~0.30%</li><li>103: ~0.30%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~0.30%</li><li>107: ~0.70%</li><li>108: ~0.30%</li><li>109: ~3.20%</li><li>110: ~0.30%</li><li>111: ~0.40%</li><li>112: ~2.30%</li><li>113: ~0.30%</li><li>114: ~0.30%</li><li>115: ~0.50%</li><li>116: ~0.50%</li><li>117: ~0.50%</li><li>118: ~0.40%</li><li>119: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.30%</li><li>122: ~0.80%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.30%</li><li>126: ~0.30%</li><li>127: ~0.30%</li><li>128: ~0.30%</li><li>129: ~0.30%</li><li>130: ~0.30%</li><li>131: ~0.50%</li><li>132: ~0.30%</li><li>133: ~0.40%</li><li>134: ~0.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.30%</li><li>138: ~0.30%</li><li>139: ~0.30%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.30%</li><li>143: ~0.30%</li><li>144: ~0.40%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.30%</li><li>150: ~0.30%</li><li>151: ~0.70%</li><li>152: ~0.30%</li><li>153: ~0.30%</li><li>154: ~0.30%</li><li>155: ~1.30%</li><li>156: ~0.30%</li><li>157: ~0.40%</li><li>158: ~0.30%</li><li>159: ~0.30%</li><li>160: ~0.30%</li><li>161: ~1.50%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.30%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~0.30%</li><li>168: ~0.30%</li><li>169: ~1.50%</li><li>170: ~0.30%</li><li>171: ~0.30%</li><li>172: ~7.20%</li><li>173: ~0.30%</li><li>174: ~1.00%</li><li>175: ~0.30%</li><li>176: ~0.30%</li><li>177: ~0.30%</li><li>178: ~1.80%</li><li>179: ~0.30%</li><li>180: ~0.50%</li><li>181: ~0.70%</li><li>182: ~0.30%</li><li>183: ~0.30%</li></ul> |
|
|
* Samples:
|
|
| sentence | label |
|
|
|:-----------------------------------------|:---------------|
|
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
|
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
|
* Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `per_device_train_batch_size`: 512
|
|
- `per_device_eval_batch_size`: 512
|
|
- `learning_rate`: 1e-05
|
|
- `weight_decay`: 0.01
|
|
- `num_train_epochs`: 250
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
- `batch_sampler`: group_by_label
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: no
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 512
|
|
- `per_device_eval_batch_size`: 512
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 1e-05
|
|
- `weight_decay`: 0.01
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 250
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `tp_size`: 0
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: group_by_label
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss |
|
|
|:-------:|:----:|:-------------:|
|
|
| 4.125 | 100 | 0.0682 |
|
|
| 8.25 | 200 | 0.0745 |
|
|
| 12.375 | 300 | 0.0764 |
|
|
| 16.5 | 400 | 0.0778 |
|
|
| 20.625 | 500 | 0.077 |
|
|
| 24.75 | 600 | 0.0767 |
|
|
| 29.125 | 700 | 0.0738 |
|
|
| 33.25 | 800 | 0.0701 |
|
|
| 37.375 | 900 | 0.0677 |
|
|
| 41.5 | 1000 | 0.0689 |
|
|
| 45.625 | 1100 | 0.0661 |
|
|
| 49.75 | 1200 | 0.0677 |
|
|
| 54.125 | 1300 | 0.0627 |
|
|
| 58.25 | 1400 | 0.0629 |
|
|
| 62.375 | 1500 | 0.0625 |
|
|
| 66.5 | 1600 | 0.0655 |
|
|
| 70.625 | 1700 | 0.0645 |
|
|
| 74.75 | 1800 | 0.0595 |
|
|
| 79.125 | 1900 | 0.0608 |
|
|
| 83.25 | 2000 | 0.0614 |
|
|
| 87.375 | 2100 | 0.0567 |
|
|
| 91.5 | 2200 | 0.0612 |
|
|
| 95.625 | 2300 | 0.0599 |
|
|
| 99.75 | 2400 | 0.059 |
|
|
| 104.125 | 2500 | 0.0547 |
|
|
| 108.25 | 2600 | 0.0571 |
|
|
| 112.375 | 2700 | 0.0543 |
|
|
| 116.5 | 2800 | 0.0574 |
|
|
| 120.625 | 2900 | 0.0561 |
|
|
| 124.75 | 3000 | 0.0534 |
|
|
| 129.125 | 3100 | 0.0554 |
|
|
| 133.25 | 3200 | 0.0507 |
|
|
| 137.375 | 3300 | 0.0533 |
|
|
| 141.5 | 3400 | 0.05 |
|
|
| 145.625 | 3500 | 0.0569 |
|
|
| 149.75 | 3600 | 0.0551 |
|
|
| 154.125 | 3700 | 0.0558 |
|
|
| 158.25 | 3800 | 0.0539 |
|
|
| 162.375 | 3900 | 0.0498 |
|
|
| 166.5 | 4000 | 0.0512 |
|
|
| 170.625 | 4100 | 0.0481 |
|
|
| 174.75 | 4200 | 0.0492 |
|
|
| 179.125 | 4300 | 0.0513 |
|
|
| 183.25 | 4400 | 0.0474 |
|
|
| 187.375 | 4500 | 0.0491 |
|
|
| 191.5 | 4600 | 0.0513 |
|
|
| 195.625 | 4700 | 0.0453 |
|
|
| 199.75 | 4800 | 0.0453 |
|
|
| 204.125 | 4900 | 0.0489 |
|
|
| 208.25 | 5000 | 0.0481 |
|
|
| 212.375 | 5100 | 0.0498 |
|
|
| 216.5 | 5200 | 0.044 |
|
|
| 220.625 | 5300 | 0.0486 |
|
|
| 224.75 | 5400 | 0.0399 |
|
|
| 229.125 | 5500 | 0.0384 |
|
|
| 233.25 | 5600 | 0.0428 |
|
|
| 237.375 | 5700 | 0.0447 |
|
|
| 241.5 | 5800 | 0.0479 |
|
|
| 245.625 | 5900 | 0.0434 |
|
|
| 249.75 | 6000 | 0.0442 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.12
|
|
- Sentence Transformers: 3.4.1
|
|
- Transformers: 4.51.3
|
|
- PyTorch: 2.6.0+cu124
|
|
- Accelerate: 1.5.2
|
|
- Datasets: 3.5.0
|
|
- Tokenizers: 0.21.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### CustomBatchAllTripletLoss
|
|
```bibtex
|
|
@misc{hermans2017defense,
|
|
title={In Defense of the Triplet Loss for Person Re-Identification},
|
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
|
year={2017},
|
|
eprint={1703.07737},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |