Add new SentenceTransformer model with an onnx backend (#1)
Browse files- Add new SentenceTransformer model with an onnx backend (183f8bb0f1a3ba0f3825698600b08bf923af4d0f)
- 1_Pooling/config.json +9 -9
- README.md +409 -409
- config.json +25 -24
- config_sentence_transformers.json +9 -9
- modules.json +13 -13
- onnx/model.onnx +3 -0
- sentence_bert_config.json +3 -3
- special_tokens_map.json +37 -37
- tokenizer_config.json +64 -64
- vocab.txt +0 -0
    	
        1_Pooling/config.json
    CHANGED
    
    | @@ -1,10 +1,10 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
              "word_embedding_dimension": 768,
         | 
| 3 | 
            -
              "pooling_mode_cls_token": true,
         | 
| 4 | 
            -
              "pooling_mode_mean_tokens": false,
         | 
| 5 | 
            -
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            -
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            -
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            -
              "pooling_mode_lasttoken": false,
         | 
| 9 | 
            -
              "include_prompt": true
         | 
| 10 | 
             
            }
         | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 768,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": true,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": false,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
              "pooling_mode_lasttoken": false,
         | 
| 9 | 
            +
              "include_prompt": true
         | 
| 10 | 
             
            }
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,410 +1,410 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
            tags:
         | 
| 3 | 
            -
            - sentence-transformers
         | 
| 4 | 
            -
            - sentence-similarity
         | 
| 5 | 
            -
            - feature-extraction
         | 
| 6 | 
            -
            - generated_from_trainer
         | 
| 7 | 
            -
            - dataset_size:16199
         | 
| 8 | 
            -
            - loss:CustomBatchAllTripletLoss
         | 
| 9 | 
            -
            widget:
         | 
| 10 | 
            -
            - source_sentence: 科目:コンクリート。名称:立上り壁コンクリート。
         | 
| 11 | 
            -
              sentences:
         | 
| 12 | 
            -
              - 科目:ユニット及びその他。名称:棚。
         | 
| 13 | 
            -
              - 科目:ユニット及びその他。名称:事務室スチールパーティション。
         | 
| 14 | 
            -
              - 科目:ユニット及びその他。名称:F-R#収納棚。
         | 
| 15 | 
            -
            - source_sentence: 科目:タイル。名称:段鼻タイル。
         | 
| 16 | 
            -
              sentences:
         | 
| 17 | 
            -
              - 科目:タイル。名称:巾木磁器質タイル。
         | 
| 18 | 
            -
              - 科目:タイル。名称:立上りタイルA。
         | 
| 19 | 
            -
              - 科目:タイル。名称:アプローチテラス立上り天端床タイルA。
         | 
| 20 | 
            -
            - source_sentence: 科目:ユニット及びその他。名称:#階F-WC#他パウダーカウンター。
         | 
| 21 | 
            -
              sentences:
         | 
| 22 | 
            -
              - 科目:ユニット及びその他。名称:便所フック(二段)。
         | 
| 23 | 
            -
              - 科目:ユニット及びその他。名称:テラス床ウッドデッキ。
         | 
| 24 | 
            -
              - 科目:ユニット及びその他。名称:フラットテラス床ウッドデッキ。
         | 
| 25 | 
            -
            - source_sentence: 科目:ユニット及びその他。名称:階数表示+停止階案内サイン。
         | 
| 26 | 
            -
              sentences:
         | 
| 27 | 
            -
              - 科目:ユニット及びその他。名称:エレベーターホール入口サイン。
         | 
| 28 | 
            -
              - 科目:ユニット及びその他。名称:場外離着陸用オイルトラップ。
         | 
| 29 | 
            -
              - 科目:ユニット及びその他。名称:器材カウンター。
         | 
| 30 | 
            -
            - source_sentence: 科目:ユニット及びその他。名称:階段内踊場階数サイン。
         | 
| 31 | 
            -
              sentences:
         | 
| 32 | 
            -
              - 科目:ユニット及びその他。名称:F-T#布団収納棚。
         | 
| 33 | 
            -
              - 科目:ユニット及びその他。名称:#F廊下#飾り棚。
         | 
| 34 | 
            -
              - 科目:ユニット及びその他。名称:F-#階理科室#収納棚。
         | 
| 35 | 
            -
            pipeline_tag: sentence-similarity
         | 
| 36 | 
            -
            library_name: sentence-transformers
         | 
| 37 | 
            -
            ---
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            # SentenceTransformer
         | 
| 40 | 
            -
             | 
| 41 | 
            -
            This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
         | 
| 42 | 
            -
             | 
| 43 | 
            -
            ## Model Details
         | 
| 44 | 
            -
             | 
| 45 | 
            -
            ### Model Description
         | 
| 46 | 
            -
            - **Model Type:** Sentence Transformer
         | 
| 47 | 
            -
            <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
         | 
| 48 | 
            -
            - **Maximum Sequence Length:** 512 tokens
         | 
| 49 | 
            -
            - **Output Dimensionality:** 768 dimensions
         | 
| 50 | 
            -
            - **Similarity Function:** Cosine Similarity
         | 
| 51 | 
            -
            <!-- - **Training Dataset:** Unknown -->
         | 
| 52 | 
            -
            <!-- - **Language:** Unknown -->
         | 
| 53 | 
            -
            <!-- - **License:** Unknown -->
         | 
| 54 | 
            -
             | 
| 55 | 
            -
            ### Model Sources
         | 
| 56 | 
            -
             | 
| 57 | 
            -
            - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
         | 
| 58 | 
            -
            - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
         | 
| 59 | 
            -
            - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
         | 
| 60 | 
            -
             | 
| 61 | 
            -
            ### Full Model Architecture
         | 
| 62 | 
            -
             | 
| 63 | 
            -
            ```
         | 
| 64 | 
            -
            SentenceTransformer(
         | 
| 65 | 
            -
              (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
         | 
| 66 | 
            -
              (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
         | 
| 67 | 
            -
            )
         | 
| 68 | 
            -
            ```
         | 
| 69 | 
            -
             | 
| 70 | 
            -
            ## Usage
         | 
| 71 | 
            -
             | 
| 72 | 
            -
            ### Direct Usage (Sentence Transformers)
         | 
| 73 | 
            -
             | 
| 74 | 
            -
            First install the Sentence Transformers library:
         | 
| 75 | 
            -
             | 
| 76 | 
            -
            ```bash
         | 
| 77 | 
            -
            pip install -U sentence-transformers
         | 
| 78 | 
            -
            ```
         | 
| 79 | 
            -
             | 
| 80 | 
            -
            Then you can load this model and run inference.
         | 
| 81 | 
            -
            ```python
         | 
| 82 | 
            -
            from sentence_transformers import SentenceTransformer
         | 
| 83 | 
            -
             | 
| 84 | 
            -
            # Download from the 🤗 Hub
         | 
| 85 | 
            -
            model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_1")
         | 
| 86 | 
            -
            # Run inference
         | 
| 87 | 
            -
            sentences = [
         | 
| 88 | 
            -
                '科目:ユニット及びその他。名称:階段内踊場階数サイン。',
         | 
| 89 | 
            -
                '科目:ユニット及びその他。名称:F-#階理科室#収納棚。',
         | 
| 90 | 
            -
                '科目:ユニット及びその他。名称:F-T#布団収納棚。',
         | 
| 91 | 
            -
            ]
         | 
| 92 | 
            -
            embeddings = model.encode(sentences)
         | 
| 93 | 
            -
            print(embeddings.shape)
         | 
| 94 | 
            -
            # [3, 768]
         | 
| 95 | 
            -
             | 
| 96 | 
            -
            # Get the similarity scores for the embeddings
         | 
| 97 | 
            -
            similarities = model.similarity(embeddings, embeddings)
         | 
| 98 | 
            -
            print(similarities.shape)
         | 
| 99 | 
            -
            # [3, 3]
         | 
| 100 | 
            -
            ```
         | 
| 101 | 
            -
             | 
| 102 | 
            -
            <!--
         | 
| 103 | 
            -
            ### Direct Usage (Transformers)
         | 
| 104 | 
            -
             | 
| 105 | 
            -
            <details><summary>Click to see the direct usage in Transformers</summary>
         | 
| 106 | 
            -
             | 
| 107 | 
            -
            </details>
         | 
| 108 | 
            -
            -->
         | 
| 109 | 
            -
             | 
| 110 | 
            -
            <!--
         | 
| 111 | 
            -
            ### Downstream Usage (Sentence Transformers)
         | 
| 112 | 
            -
             | 
| 113 | 
            -
            You can finetune this model on your own dataset.
         | 
| 114 | 
            -
             | 
| 115 | 
            -
            <details><summary>Click to expand</summary>
         | 
| 116 | 
            -
             | 
| 117 | 
            -
            </details>
         | 
| 118 | 
            -
            -->
         | 
| 119 | 
            -
             | 
| 120 | 
            -
            <!--
         | 
| 121 | 
            -
            ### Out-of-Scope Use
         | 
| 122 | 
            -
             | 
| 123 | 
            -
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 124 | 
            -
            -->
         | 
| 125 | 
            -
             | 
| 126 | 
            -
            <!--
         | 
| 127 | 
            -
            ## Bias, Risks and Limitations
         | 
| 128 | 
            -
             | 
| 129 | 
            -
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 130 | 
            -
            -->
         | 
| 131 | 
            -
             | 
| 132 | 
            -
            <!--
         | 
| 133 | 
            -
            ### Recommendations
         | 
| 134 | 
            -
             | 
| 135 | 
            -
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 136 | 
            -
            -->
         | 
| 137 | 
            -
             | 
| 138 | 
            -
            ## Training Details
         | 
| 139 | 
            -
             | 
| 140 | 
            -
            ### Training Dataset
         | 
| 141 | 
            -
             | 
| 142 | 
            -
            #### Unnamed Dataset
         | 
| 143 | 
            -
             | 
| 144 | 
            -
            * Size: 16,199 training samples
         | 
| 145 | 
            -
            * Columns: <code>sentence</code> and <code>label</code>
         | 
| 146 | 
            -
            * Approximate statistics based on the first 1000 samples:
         | 
| 147 | 
            -
              |         | sentence                                                                           | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
         | 
| 148 | 
            -
              |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
         | 
| 149 | 
            -
              | type    | string                                                                             | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
         | 
| 150 | 
            -
              | details | <ul><li>min: 11 tokens</li><li>mean: 18.73 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~2.40%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.40%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.90%</li><li>19: ~0.30%</li><li>20: ~1.30%</li><li>21: ~0.30%</li><li>22: ~1.10%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.30%</li><li>30: ~0.30%</li><li>31: ~0.30%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.40%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.30%</li><li>54: ~0.30%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.60%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.50%</li><li>65: ~0.30%</li><li>66: ~0.30%</li><li>67: ~0.30%</li><li>68: ~0.30%</li><li>69: ~0.50%</li><li>70: ~0.60%</li><li>71: ~0.30%</li><li>72: ~0.30%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.80%</li><li>85: ~0.60%</li><li>86: ~0.50%</li><li>87: ~0.30%</li><li>88: ~0.30%</li><li>89: ~16.30%</li><li>90: ~0.30%</li><li>91: ~0.30%</li><li>92: ~0.30%</li><li>93: ~0.30%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.30%</li><li>97: ~0.30%</li><li>98: ~0.50%</li><li>99: ~0.30%</li><li>100: ~0.30%</li><li>101: ~0.30%</li><li>102: ~0.30%</li><li>103: ~0.30%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~0.30%</li><li>107: ~0.70%</li><li>108: ~0.30%</li><li>109: ~3.20%</li><li>110: ~0.30%</li><li>111: ~0.40%</li><li>112: ~2.30%</li><li>113: ~0.30%</li><li>114: ~0.30%</li><li>115: ~0.50%</li><li>116: ~0.50%</li><li>117: ~0.50%</li><li>118: ~0.40%</li><li>119: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.30%</li><li>122: ~0.80%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.30%</li><li>126: ~0.30%</li><li>127: ~0.30%</li><li>128: ~0.30%</li><li>129: ~0.30%</li><li>130: ~0.30%</li><li>131: ~0.50%</li><li>132: ~0.30%</li><li>133: ~0.40%</li><li>134: ~0.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.30%</li><li>138: ~0.30%</li><li>139: ~0.30%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.30%</li><li>143: ~0.30%</li><li>144: ~0.40%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.30%</li><li>150: ~0.30%</li><li>151: ~0.70%</li><li>152: ~0.30%</li><li>153: ~0.30%</li><li>154: ~0.30%</li><li>155: ~1.30%</li><li>156: ~0.30%</li><li>157: ~0.40%</li><li>158: ~0.30%</li><li>159: ~0.30%</li><li>160: ~0.30%</li><li>161: ~1.50%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.30%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~0.30%</li><li>168: ~0.30%</li><li>169: ~1.50%</li><li>170: ~0.30%</li><li>171: ~0.30%</li><li>172: ~7.20%</li><li>173: ~0.30%</li><li>174: ~1.00%</li><li>175: ~0.30%</li><li>176: ~0.30%</li><li>177: ~0.30%</li><li>178: ~1.80%</li><li>179: ~0.30%</li><li>180: ~0.50%</li><li>181: ~0.70%</li><li>182: ~0.30%</li><li>183: ~0.30%</li></ul> |
         | 
| 151 | 
            -
            * Samples:
         | 
| 152 | 
            -
              | sentence                                 | label          |
         | 
| 153 | 
            -
              |:-----------------------------------------|:---------------|
         | 
| 154 | 
            -
              | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
         | 
| 155 | 
            -
              | <code | 
| 156 | 
            -
              | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
         | 
| 157 | 
            -
            * Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
         | 
| 158 | 
            -
             | 
| 159 | 
            -
            ### Training Hyperparameters
         | 
| 160 | 
            -
            #### Non-Default Hyperparameters
         | 
| 161 | 
            -
             | 
| 162 | 
            -
            - `per_device_train_batch_size`: 512
         | 
| 163 | 
            -
            - `per_device_eval_batch_size`: 512
         | 
| 164 | 
            -
            - `learning_rate`: 1e-05
         | 
| 165 | 
            -
            - `weight_decay`: 0.01
         | 
| 166 | 
            -
            - `num_train_epochs`: 250
         | 
| 167 | 
            -
            - `warmup_ratio`: 0.1
         | 
| 168 | 
            -
            - `fp16`: True
         | 
| 169 | 
            -
            - `batch_sampler`: group_by_label
         | 
| 170 | 
            -
             | 
| 171 | 
            -
            #### All Hyperparameters
         | 
| 172 | 
            -
            <details><summary>Click to expand</summary>
         | 
| 173 | 
            -
             | 
| 174 | 
            -
            - `overwrite_output_dir`: False
         | 
| 175 | 
            -
            - `do_predict`: False
         | 
| 176 | 
            -
            - `eval_strategy`: no
         | 
| 177 | 
            -
            - `prediction_loss_only`: True
         | 
| 178 | 
            -
            - `per_device_train_batch_size`: 512
         | 
| 179 | 
            -
            - `per_device_eval_batch_size`: 512
         | 
| 180 | 
            -
            - `per_gpu_train_batch_size`: None
         | 
| 181 | 
            -
            - `per_gpu_eval_batch_size`: None
         | 
| 182 | 
            -
            - `gradient_accumulation_steps`: 1
         | 
| 183 | 
            -
            - `eval_accumulation_steps`: None
         | 
| 184 | 
            -
            - `torch_empty_cache_steps`: None
         | 
| 185 | 
            -
            - `learning_rate`: 1e-05
         | 
| 186 | 
            -
            - `weight_decay`: 0.01
         | 
| 187 | 
            -
            - `adam_beta1`: 0.9
         | 
| 188 | 
            -
            - `adam_beta2`: 0.999
         | 
| 189 | 
            -
            - `adam_epsilon`: 1e-08
         | 
| 190 | 
            -
            - `max_grad_norm`: 1.0
         | 
| 191 | 
            -
            - `num_train_epochs`: 250
         | 
| 192 | 
            -
            - `max_steps`: -1
         | 
| 193 | 
            -
            - `lr_scheduler_type`: linear
         | 
| 194 | 
            -
            - `lr_scheduler_kwargs`: {}
         | 
| 195 | 
            -
            - `warmup_ratio`: 0.1
         | 
| 196 | 
            -
            - `warmup_steps`: 0
         | 
| 197 | 
            -
            - `log_level`: passive
         | 
| 198 | 
            -
            - `log_level_replica`: warning
         | 
| 199 | 
            -
            - `log_on_each_node`: True
         | 
| 200 | 
            -
            - `logging_nan_inf_filter`: True
         | 
| 201 | 
            -
            - `save_safetensors`: True
         | 
| 202 | 
            -
            - `save_on_each_node`: False
         | 
| 203 | 
            -
            - `save_only_model`: False
         | 
| 204 | 
            -
            - `restore_callback_states_from_checkpoint`: False
         | 
| 205 | 
            -
            - `no_cuda`: False
         | 
| 206 | 
            -
            - `use_cpu`: False
         | 
| 207 | 
            -
            - `use_mps_device`: False
         | 
| 208 | 
            -
            - `seed`: 42
         | 
| 209 | 
            -
            - `data_seed`: None
         | 
| 210 | 
            -
            - `jit_mode_eval`: False
         | 
| 211 | 
            -
            - `use_ipex`: False
         | 
| 212 | 
            -
            - `bf16`: False
         | 
| 213 | 
            -
            - `fp16`: True
         | 
| 214 | 
            -
            - `fp16_opt_level`: O1
         | 
| 215 | 
            -
            - `half_precision_backend`: auto
         | 
| 216 | 
            -
            - `bf16_full_eval`: False
         | 
| 217 | 
            -
            - `fp16_full_eval`: False
         | 
| 218 | 
            -
            - `tf32`: None
         | 
| 219 | 
            -
            - `local_rank`: 0
         | 
| 220 | 
            -
            - `ddp_backend`: None
         | 
| 221 | 
            -
            - `tpu_num_cores`: None
         | 
| 222 | 
            -
            - `tpu_metrics_debug`: False
         | 
| 223 | 
            -
            - `debug`: []
         | 
| 224 | 
            -
            - `dataloader_drop_last`: False
         | 
| 225 | 
            -
            - `dataloader_num_workers`: 0
         | 
| 226 | 
            -
            - `dataloader_prefetch_factor`: None
         | 
| 227 | 
            -
            - `past_index`: -1
         | 
| 228 | 
            -
            - `disable_tqdm`: False
         | 
| 229 | 
            -
            - `remove_unused_columns`: True
         | 
| 230 | 
            -
            - `label_names`: None
         | 
| 231 | 
            -
            - `load_best_model_at_end`: False
         | 
| 232 | 
            -
            - `ignore_data_skip`: False
         | 
| 233 | 
            -
            - `fsdp`: []
         | 
| 234 | 
            -
            - `fsdp_min_num_params`: 0
         | 
| 235 | 
            -
            - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
         | 
| 236 | 
            -
            - `tp_size`: 0
         | 
| 237 | 
            -
            - `fsdp_transformer_layer_cls_to_wrap`: None
         | 
| 238 | 
            -
            - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
         | 
| 239 | 
            -
            - `deepspeed`: None
         | 
| 240 | 
            -
            - `label_smoothing_factor`: 0.0
         | 
| 241 | 
            -
            - `optim`: adamw_torch
         | 
| 242 | 
            -
            - `optim_args`: None
         | 
| 243 | 
            -
            - `adafactor`: False
         | 
| 244 | 
            -
            - `group_by_length`: False
         | 
| 245 | 
            -
            - `length_column_name`: length
         | 
| 246 | 
            -
            - `ddp_find_unused_parameters`: None
         | 
| 247 | 
            -
            - `ddp_bucket_cap_mb`: None
         | 
| 248 | 
            -
            - `ddp_broadcast_buffers`: False
         | 
| 249 | 
            -
            - `dataloader_pin_memory`: True
         | 
| 250 | 
            -
            - `dataloader_persistent_workers`: False
         | 
| 251 | 
            -
            - `skip_memory_metrics`: True
         | 
| 252 | 
            -
            - `use_legacy_prediction_loop`: False
         | 
| 253 | 
            -
            - `push_to_hub`: False
         | 
| 254 | 
            -
            - `resume_from_checkpoint`: None
         | 
| 255 | 
            -
            - `hub_model_id`: None
         | 
| 256 | 
            -
            - `hub_strategy`: every_save
         | 
| 257 | 
            -
            - `hub_private_repo`: None
         | 
| 258 | 
            -
            - `hub_always_push`: False
         | 
| 259 | 
            -
            - `gradient_checkpointing`: False
         | 
| 260 | 
            -
            - `gradient_checkpointing_kwargs`: None
         | 
| 261 | 
            -
            - `include_inputs_for_metrics`: False
         | 
| 262 | 
            -
            - `include_for_metrics`: []
         | 
| 263 | 
            -
            - `eval_do_concat_batches`: True
         | 
| 264 | 
            -
            - `fp16_backend`: auto
         | 
| 265 | 
            -
            - `push_to_hub_model_id`: None
         | 
| 266 | 
            -
            - `push_to_hub_organization`: None
         | 
| 267 | 
            -
            - `mp_parameters`: 
         | 
| 268 | 
            -
            - `auto_find_batch_size`: False
         | 
| 269 | 
            -
            - `full_determinism`: False
         | 
| 270 | 
            -
            - `torchdynamo`: None
         | 
| 271 | 
            -
            - `ray_scope`: last
         | 
| 272 | 
            -
            - `ddp_timeout`: 1800
         | 
| 273 | 
            -
            - `torch_compile`: False
         | 
| 274 | 
            -
            - `torch_compile_backend`: None
         | 
| 275 | 
            -
            - `torch_compile_mode`: None
         | 
| 276 | 
            -
            - `include_tokens_per_second`: False
         | 
| 277 | 
            -
            - `include_num_input_tokens_seen`: False
         | 
| 278 | 
            -
            - `neftune_noise_alpha`: None
         | 
| 279 | 
            -
            - `optim_target_modules`: None
         | 
| 280 | 
            -
            - `batch_eval_metrics`: False
         | 
| 281 | 
            -
            - `eval_on_start`: False
         | 
| 282 | 
            -
            - `use_liger_kernel`: False
         | 
| 283 | 
            -
            - `eval_use_gather_object`: False
         | 
| 284 | 
            -
            - `average_tokens_across_devices`: False
         | 
| 285 | 
            -
            - `prompts`: None
         | 
| 286 | 
            -
            - `batch_sampler`: group_by_label
         | 
| 287 | 
            -
            - `multi_dataset_batch_sampler`: proportional
         | 
| 288 | 
            -
             | 
| 289 | 
            -
            </details>
         | 
| 290 | 
            -
             | 
| 291 | 
            -
            ### Training Logs
         | 
| 292 | 
            -
            | Epoch   | Step | Training Loss |
         | 
| 293 | 
            -
            |:-------:|:----:|:-------------:|
         | 
| 294 | 
            -
            | 4.125   | 100  | 0.0682        |
         | 
| 295 | 
            -
            | 8.25    | 200  | 0.0745        |
         | 
| 296 | 
            -
            | 12.375  | 300  | 0.0764        |
         | 
| 297 | 
            -
            | 16.5    | 400  | 0.0778        |
         | 
| 298 | 
            -
            | 20.625  | 500  | 0.077         |
         | 
| 299 | 
            -
            | 24.75   | 600  | 0.0767        |
         | 
| 300 | 
            -
            | 29.125  | 700  | 0.0738        |
         | 
| 301 | 
            -
            | 33.25   | 800  | 0.0701        |
         | 
| 302 | 
            -
            | 37.375  | 900  | 0.0677        |
         | 
| 303 | 
            -
            | 41.5    | 1000 | 0.0689        |
         | 
| 304 | 
            -
            | 45.625  | 1100 | 0.0661        |
         | 
| 305 | 
            -
            | 49.75   | 1200 | 0.0677        |
         | 
| 306 | 
            -
            | 54.125  | 1300 | 0.0627        |
         | 
| 307 | 
            -
            | 58.25   | 1400 | 0.0629        |
         | 
| 308 | 
            -
            | 62.375  | 1500 | 0.0625        |
         | 
| 309 | 
            -
            | 66.5    | 1600 | 0.0655        |
         | 
| 310 | 
            -
            | 70.625  | 1700 | 0.0645        |
         | 
| 311 | 
            -
            | 74.75   | 1800 | 0.0595        |
         | 
| 312 | 
            -
            | 79.125  | 1900 | 0.0608        |
         | 
| 313 | 
            -
            | 83.25   | 2000 | 0.0614        |
         | 
| 314 | 
            -
            | 87.375  | 2100 | 0.0567        |
         | 
| 315 | 
            -
            | 91.5    | 2200 | 0.0612        |
         | 
| 316 | 
            -
            | 95.625  | 2300 | 0.0599        |
         | 
| 317 | 
            -
            | 99.75   | 2400 | 0.059         |
         | 
| 318 | 
            -
            | 104.125 | 2500 | 0.0547        |
         | 
| 319 | 
            -
            | 108.25  | 2600 | 0.0571        |
         | 
| 320 | 
            -
            | 112.375 | 2700 | 0.0543        |
         | 
| 321 | 
            -
            | 116.5   | 2800 | 0.0574        |
         | 
| 322 | 
            -
            | 120.625 | 2900 | 0.0561        |
         | 
| 323 | 
            -
            | 124.75  | 3000 | 0.0534        |
         | 
| 324 | 
            -
            | 129.125 | 3100 | 0.0554        |
         | 
| 325 | 
            -
            | 133.25  | 3200 | 0.0507        |
         | 
| 326 | 
            -
            | 137.375 | 3300 | 0.0533        |
         | 
| 327 | 
            -
            | 141.5   | 3400 | 0.05          |
         | 
| 328 | 
            -
            | 145.625 | 3500 | 0.0569        |
         | 
| 329 | 
            -
            | 149.75  | 3600 | 0.0551        |
         | 
| 330 | 
            -
            | 154.125 | 3700 | 0.0558        |
         | 
| 331 | 
            -
            | 158.25  | 3800 | 0.0539        |
         | 
| 332 | 
            -
            | 162.375 | 3900 | 0.0498        |
         | 
| 333 | 
            -
            | 166.5   | 4000 | 0.0512        |
         | 
| 334 | 
            -
            | 170.625 | 4100 | 0.0481        |
         | 
| 335 | 
            -
            | 174.75  | 4200 | 0.0492        |
         | 
| 336 | 
            -
            | 179.125 | 4300 | 0.0513        |
         | 
| 337 | 
            -
            | 183.25  | 4400 | 0.0474        |
         | 
| 338 | 
            -
            | 187.375 | 4500 | 0.0491        |
         | 
| 339 | 
            -
            | 191.5   | 4600 | 0.0513        |
         | 
| 340 | 
            -
            | 195.625 | 4700 | 0.0453        |
         | 
| 341 | 
            -
            | 199.75  | 4800 | 0.0453        |
         | 
| 342 | 
            -
            | 204.125 | 4900 | 0.0489        |
         | 
| 343 | 
            -
            | 208.25  | 5000 | 0.0481        |
         | 
| 344 | 
            -
            | 212.375 | 5100 | 0.0498        |
         | 
| 345 | 
            -
            | 216.5   | 5200 | 0.044         |
         | 
| 346 | 
            -
            | 220.625 | 5300 | 0.0486        |
         | 
| 347 | 
            -
            | 224.75  | 5400 | 0.0399        |
         | 
| 348 | 
            -
            | 229.125 | 5500 | 0.0384        |
         | 
| 349 | 
            -
            | 233.25  | 5600 | 0.0428        |
         | 
| 350 | 
            -
            | 237.375 | 5700 | 0.0447        |
         | 
| 351 | 
            -
            | 241.5   | 5800 | 0.0479        |
         | 
| 352 | 
            -
            | 245.625 | 5900 | 0.0434        |
         | 
| 353 | 
            -
            | 249.75  | 6000 | 0.0442        |
         | 
| 354 | 
            -
             | 
| 355 | 
            -
             | 
| 356 | 
            -
            ### Framework Versions
         | 
| 357 | 
            -
            - Python: 3.11.12
         | 
| 358 | 
            -
            - Sentence Transformers: 3.4.1
         | 
| 359 | 
            -
            - Transformers: 4.51.3
         | 
| 360 | 
            -
            - PyTorch: 2.6.0+cu124
         | 
| 361 | 
            -
            - Accelerate: 1.5.2
         | 
| 362 | 
            -
            - Datasets: 3.5.0
         | 
| 363 | 
            -
            - Tokenizers: 0.21.1
         | 
| 364 | 
            -
             | 
| 365 | 
            -
            ## Citation
         | 
| 366 | 
            -
             | 
| 367 | 
            -
            ### BibTeX
         | 
| 368 | 
            -
             | 
| 369 | 
            -
            #### Sentence Transformers
         | 
| 370 | 
            -
            ```bibtex
         | 
| 371 | 
            -
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 372 | 
            -
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 373 | 
            -
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 374 | 
            -
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 375 | 
            -
                month = "11",
         | 
| 376 | 
            -
                year = "2019",
         | 
| 377 | 
            -
                publisher = "Association for Computational Linguistics",
         | 
| 378 | 
            -
                url = "https://arxiv.org/abs/1908.10084",
         | 
| 379 | 
            -
            }
         | 
| 380 | 
            -
            ```
         | 
| 381 | 
            -
             | 
| 382 | 
            -
            #### CustomBatchAllTripletLoss
         | 
| 383 | 
            -
            ```bibtex
         | 
| 384 | 
            -
            @misc{hermans2017defense,
         | 
| 385 | 
            -
                title={In Defense of the Triplet Loss for Person Re-Identification},
         | 
| 386 | 
            -
                author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
         | 
| 387 | 
            -
                year={2017},
         | 
| 388 | 
            -
                eprint={1703.07737},
         | 
| 389 | 
            -
                archivePrefix={arXiv},
         | 
| 390 | 
            -
                primaryClass={cs.CV}
         | 
| 391 | 
            -
            }
         | 
| 392 | 
            -
            ```
         | 
| 393 | 
            -
             | 
| 394 | 
            -
            <!--
         | 
| 395 | 
            -
            ## Glossary
         | 
| 396 | 
            -
             | 
| 397 | 
            -
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 398 | 
            -
            -->
         | 
| 399 | 
            -
             | 
| 400 | 
            -
            <!--
         | 
| 401 | 
            -
            ## Model Card Authors
         | 
| 402 | 
            -
             | 
| 403 | 
            -
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 404 | 
            -
            -->
         | 
| 405 | 
            -
             | 
| 406 | 
            -
            <!--
         | 
| 407 | 
            -
            ## Model Card Contact
         | 
| 408 | 
            -
             | 
| 409 | 
            -
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 410 | 
             
            -->
         | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - sentence-transformers
         | 
| 4 | 
            +
            - sentence-similarity
         | 
| 5 | 
            +
            - feature-extraction
         | 
| 6 | 
            +
            - generated_from_trainer
         | 
| 7 | 
            +
            - dataset_size:16199
         | 
| 8 | 
            +
            - loss:CustomBatchAllTripletLoss
         | 
| 9 | 
            +
            widget:
         | 
| 10 | 
            +
            - source_sentence: 科目:コンクリート。名称:立上り壁コンクリート。
         | 
| 11 | 
            +
              sentences:
         | 
| 12 | 
            +
              - 科目:ユニット及びその他。名称:棚。
         | 
| 13 | 
            +
              - 科目:ユニット及びその他。名称:事務室スチールパーティション。
         | 
| 14 | 
            +
              - 科目:ユニット及びその他。名称:F-R#収納棚。
         | 
| 15 | 
            +
            - source_sentence: 科目:タイル。名称:段鼻タイル。
         | 
| 16 | 
            +
              sentences:
         | 
| 17 | 
            +
              - 科目:タイル。名称:巾木磁器質タイル。
         | 
| 18 | 
            +
              - 科目:タイル。名称:立上りタイルA。
         | 
| 19 | 
            +
              - 科目:タイル。名称:アプローチテラス立上り天端床タイルA。
         | 
| 20 | 
            +
            - source_sentence: 科目:ユニット及びその他。名称:#階F-WC#他パウダーカウンター。
         | 
| 21 | 
            +
              sentences:
         | 
| 22 | 
            +
              - 科目:ユニット及びその他。名称:便所フック(二段)。
         | 
| 23 | 
            +
              - 科目:ユニット及びその他。名称:テラス床ウッドデッキ。
         | 
| 24 | 
            +
              - 科目:ユニット及びその他。名称:フラットテラス床ウッドデッキ。
         | 
| 25 | 
            +
            - source_sentence: 科目:ユニット及びその他。名称:階数表示+停止階案内サイン。
         | 
| 26 | 
            +
              sentences:
         | 
| 27 | 
            +
              - 科目:ユニット及びその他。名称:エレベーターホール入口サイン。
         | 
| 28 | 
            +
              - 科目:ユニット及びその他。名称:場外離着陸用オイルトラップ。
         | 
| 29 | 
            +
              - 科目:ユニット及びその他。名称:器材カウンター。
         | 
| 30 | 
            +
            - source_sentence: 科目:ユニット及びその他。名称:階段内踊場階数サイン。
         | 
| 31 | 
            +
              sentences:
         | 
| 32 | 
            +
              - 科目:ユニット及びその他。名称:F-T#布団収納棚。
         | 
| 33 | 
            +
              - 科目:ユニット及びその他。名称:#F廊下#飾り棚。
         | 
| 34 | 
            +
              - 科目:ユニット及びその他。名称:F-#階理科室#収納棚。
         | 
| 35 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 36 | 
            +
            library_name: sentence-transformers
         | 
| 37 | 
            +
            ---
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            # SentenceTransformer
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            ## Model Details
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            ### Model Description
         | 
| 46 | 
            +
            - **Model Type:** Sentence Transformer
         | 
| 47 | 
            +
            <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
         | 
| 48 | 
            +
            - **Maximum Sequence Length:** 512 tokens
         | 
| 49 | 
            +
            - **Output Dimensionality:** 768 dimensions
         | 
| 50 | 
            +
            - **Similarity Function:** Cosine Similarity
         | 
| 51 | 
            +
            <!-- - **Training Dataset:** Unknown -->
         | 
| 52 | 
            +
            <!-- - **Language:** Unknown -->
         | 
| 53 | 
            +
            <!-- - **License:** Unknown -->
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            ### Model Sources
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
         | 
| 58 | 
            +
            - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
         | 
| 59 | 
            +
            - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            ### Full Model Architecture
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            ```
         | 
| 64 | 
            +
            SentenceTransformer(
         | 
| 65 | 
            +
              (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
         | 
| 66 | 
            +
              (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
         | 
| 67 | 
            +
            )
         | 
| 68 | 
            +
            ```
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## Usage
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            ### Direct Usage (Sentence Transformers)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            First install the Sentence Transformers library:
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ```bash
         | 
| 77 | 
            +
            pip install -U sentence-transformers
         | 
| 78 | 
            +
            ```
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            Then you can load this model and run inference.
         | 
| 81 | 
            +
            ```python
         | 
| 82 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            # Download from the 🤗 Hub
         | 
| 85 | 
            +
            model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_1")
         | 
| 86 | 
            +
            # Run inference
         | 
| 87 | 
            +
            sentences = [
         | 
| 88 | 
            +
                '科目:ユニット及びその他。名称:階段内踊場階数サイン。',
         | 
| 89 | 
            +
                '科目:ユニット及びその他。名称:F-#階理科室#収納棚。',
         | 
| 90 | 
            +
                '科目:ユニット及びその他。名称:F-T#布団収納棚。',
         | 
| 91 | 
            +
            ]
         | 
| 92 | 
            +
            embeddings = model.encode(sentences)
         | 
| 93 | 
            +
            print(embeddings.shape)
         | 
| 94 | 
            +
            # [3, 768]
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            # Get the similarity scores for the embeddings
         | 
| 97 | 
            +
            similarities = model.similarity(embeddings, embeddings)
         | 
| 98 | 
            +
            print(similarities.shape)
         | 
| 99 | 
            +
            # [3, 3]
         | 
| 100 | 
            +
            ```
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            <!--
         | 
| 103 | 
            +
            ### Direct Usage (Transformers)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            <details><summary>Click to see the direct usage in Transformers</summary>
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            </details>
         | 
| 108 | 
            +
            -->
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            <!--
         | 
| 111 | 
            +
            ### Downstream Usage (Sentence Transformers)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            You can finetune this model on your own dataset.
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            </details>
         | 
| 118 | 
            +
            -->
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            <!--
         | 
| 121 | 
            +
            ### Out-of-Scope Use
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 124 | 
            +
            -->
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            <!--
         | 
| 127 | 
            +
            ## Bias, Risks and Limitations
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 130 | 
            +
            -->
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            <!--
         | 
| 133 | 
            +
            ### Recommendations
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 136 | 
            +
            -->
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            ## Training Details
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            ### Training Dataset
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            #### Unnamed Dataset
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            * Size: 16,199 training samples
         | 
| 145 | 
            +
            * Columns: <code>sentence</code> and <code>label</code>
         | 
| 146 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 147 | 
            +
              |         | sentence                                                                           | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
         | 
| 148 | 
            +
              |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
         | 
| 149 | 
            +
              | type    | string                                                                             | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
         | 
| 150 | 
            +
              | details | <ul><li>min: 11 tokens</li><li>mean: 18.73 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~2.40%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.40%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.90%</li><li>19: ~0.30%</li><li>20: ~1.30%</li><li>21: ~0.30%</li><li>22: ~1.10%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.30%</li><li>30: ~0.30%</li><li>31: ~0.30%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.40%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.30%</li><li>54: ~0.30%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.60%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.50%</li><li>65: ~0.30%</li><li>66: ~0.30%</li><li>67: ~0.30%</li><li>68: ~0.30%</li><li>69: ~0.50%</li><li>70: ~0.60%</li><li>71: ~0.30%</li><li>72: ~0.30%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.80%</li><li>85: ~0.60%</li><li>86: ~0.50%</li><li>87: ~0.30%</li><li>88: ~0.30%</li><li>89: ~16.30%</li><li>90: ~0.30%</li><li>91: ~0.30%</li><li>92: ~0.30%</li><li>93: ~0.30%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.30%</li><li>97: ~0.30%</li><li>98: ~0.50%</li><li>99: ~0.30%</li><li>100: ~0.30%</li><li>101: ~0.30%</li><li>102: ~0.30%</li><li>103: ~0.30%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~0.30%</li><li>107: ~0.70%</li><li>108: ~0.30%</li><li>109: ~3.20%</li><li>110: ~0.30%</li><li>111: ~0.40%</li><li>112: ~2.30%</li><li>113: ~0.30%</li><li>114: ~0.30%</li><li>115: ~0.50%</li><li>116: ~0.50%</li><li>117: ~0.50%</li><li>118: ~0.40%</li><li>119: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.30%</li><li>122: ~0.80%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.30%</li><li>126: ~0.30%</li><li>127: ~0.30%</li><li>128: ~0.30%</li><li>129: ~0.30%</li><li>130: ~0.30%</li><li>131: ~0.50%</li><li>132: ~0.30%</li><li>133: ~0.40%</li><li>134: ~0.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.30%</li><li>138: ~0.30%</li><li>139: ~0.30%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.30%</li><li>143: ~0.30%</li><li>144: ~0.40%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.30%</li><li>150: ~0.30%</li><li>151: ~0.70%</li><li>152: ~0.30%</li><li>153: ~0.30%</li><li>154: ~0.30%</li><li>155: ~1.30%</li><li>156: ~0.30%</li><li>157: ~0.40%</li><li>158: ~0.30%</li><li>159: ~0.30%</li><li>160: ~0.30%</li><li>161: ~1.50%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.30%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~0.30%</li><li>168: ~0.30%</li><li>169: ~1.50%</li><li>170: ~0.30%</li><li>171: ~0.30%</li><li>172: ~7.20%</li><li>173: ~0.30%</li><li>174: ~1.00%</li><li>175: ~0.30%</li><li>176: ~0.30%</li><li>177: ~0.30%</li><li>178: ~1.80%</li><li>179: ~0.30%</li><li>180: ~0.50%</li><li>181: ~0.70%</li><li>182: ~0.30%</li><li>183: ~0.30%</li></ul> |
         | 
| 151 | 
            +
            * Samples:
         | 
| 152 | 
            +
              | sentence                                 | label          |
         | 
| 153 | 
            +
              |:-----------------------------------------|:---------------|
         | 
| 154 | 
            +
              | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
         | 
| 155 | 
            +
              | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
         | 
| 156 | 
            +
              | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
         | 
| 157 | 
            +
            * Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            ### Training Hyperparameters
         | 
| 160 | 
            +
            #### Non-Default Hyperparameters
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            - `per_device_train_batch_size`: 512
         | 
| 163 | 
            +
            - `per_device_eval_batch_size`: 512
         | 
| 164 | 
            +
            - `learning_rate`: 1e-05
         | 
| 165 | 
            +
            - `weight_decay`: 0.01
         | 
| 166 | 
            +
            - `num_train_epochs`: 250
         | 
| 167 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 168 | 
            +
            - `fp16`: True
         | 
| 169 | 
            +
            - `batch_sampler`: group_by_label
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            #### All Hyperparameters
         | 
| 172 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            - `overwrite_output_dir`: False
         | 
| 175 | 
            +
            - `do_predict`: False
         | 
| 176 | 
            +
            - `eval_strategy`: no
         | 
| 177 | 
            +
            - `prediction_loss_only`: True
         | 
| 178 | 
            +
            - `per_device_train_batch_size`: 512
         | 
| 179 | 
            +
            - `per_device_eval_batch_size`: 512
         | 
| 180 | 
            +
            - `per_gpu_train_batch_size`: None
         | 
| 181 | 
            +
            - `per_gpu_eval_batch_size`: None
         | 
| 182 | 
            +
            - `gradient_accumulation_steps`: 1
         | 
| 183 | 
            +
            - `eval_accumulation_steps`: None
         | 
| 184 | 
            +
            - `torch_empty_cache_steps`: None
         | 
| 185 | 
            +
            - `learning_rate`: 1e-05
         | 
| 186 | 
            +
            - `weight_decay`: 0.01
         | 
| 187 | 
            +
            - `adam_beta1`: 0.9
         | 
| 188 | 
            +
            - `adam_beta2`: 0.999
         | 
| 189 | 
            +
            - `adam_epsilon`: 1e-08
         | 
| 190 | 
            +
            - `max_grad_norm`: 1.0
         | 
| 191 | 
            +
            - `num_train_epochs`: 250
         | 
| 192 | 
            +
            - `max_steps`: -1
         | 
| 193 | 
            +
            - `lr_scheduler_type`: linear
         | 
| 194 | 
            +
            - `lr_scheduler_kwargs`: {}
         | 
| 195 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 196 | 
            +
            - `warmup_steps`: 0
         | 
| 197 | 
            +
            - `log_level`: passive
         | 
| 198 | 
            +
            - `log_level_replica`: warning
         | 
| 199 | 
            +
            - `log_on_each_node`: True
         | 
| 200 | 
            +
            - `logging_nan_inf_filter`: True
         | 
| 201 | 
            +
            - `save_safetensors`: True
         | 
| 202 | 
            +
            - `save_on_each_node`: False
         | 
| 203 | 
            +
            - `save_only_model`: False
         | 
| 204 | 
            +
            - `restore_callback_states_from_checkpoint`: False
         | 
| 205 | 
            +
            - `no_cuda`: False
         | 
| 206 | 
            +
            - `use_cpu`: False
         | 
| 207 | 
            +
            - `use_mps_device`: False
         | 
| 208 | 
            +
            - `seed`: 42
         | 
| 209 | 
            +
            - `data_seed`: None
         | 
| 210 | 
            +
            - `jit_mode_eval`: False
         | 
| 211 | 
            +
            - `use_ipex`: False
         | 
| 212 | 
            +
            - `bf16`: False
         | 
| 213 | 
            +
            - `fp16`: True
         | 
| 214 | 
            +
            - `fp16_opt_level`: O1
         | 
| 215 | 
            +
            - `half_precision_backend`: auto
         | 
| 216 | 
            +
            - `bf16_full_eval`: False
         | 
| 217 | 
            +
            - `fp16_full_eval`: False
         | 
| 218 | 
            +
            - `tf32`: None
         | 
| 219 | 
            +
            - `local_rank`: 0
         | 
| 220 | 
            +
            - `ddp_backend`: None
         | 
| 221 | 
            +
            - `tpu_num_cores`: None
         | 
| 222 | 
            +
            - `tpu_metrics_debug`: False
         | 
| 223 | 
            +
            - `debug`: []
         | 
| 224 | 
            +
            - `dataloader_drop_last`: False
         | 
| 225 | 
            +
            - `dataloader_num_workers`: 0
         | 
| 226 | 
            +
            - `dataloader_prefetch_factor`: None
         | 
| 227 | 
            +
            - `past_index`: -1
         | 
| 228 | 
            +
            - `disable_tqdm`: False
         | 
| 229 | 
            +
            - `remove_unused_columns`: True
         | 
| 230 | 
            +
            - `label_names`: None
         | 
| 231 | 
            +
            - `load_best_model_at_end`: False
         | 
| 232 | 
            +
            - `ignore_data_skip`: False
         | 
| 233 | 
            +
            - `fsdp`: []
         | 
| 234 | 
            +
            - `fsdp_min_num_params`: 0
         | 
| 235 | 
            +
            - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
         | 
| 236 | 
            +
            - `tp_size`: 0
         | 
| 237 | 
            +
            - `fsdp_transformer_layer_cls_to_wrap`: None
         | 
| 238 | 
            +
            - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
         | 
| 239 | 
            +
            - `deepspeed`: None
         | 
| 240 | 
            +
            - `label_smoothing_factor`: 0.0
         | 
| 241 | 
            +
            - `optim`: adamw_torch
         | 
| 242 | 
            +
            - `optim_args`: None
         | 
| 243 | 
            +
            - `adafactor`: False
         | 
| 244 | 
            +
            - `group_by_length`: False
         | 
| 245 | 
            +
            - `length_column_name`: length
         | 
| 246 | 
            +
            - `ddp_find_unused_parameters`: None
         | 
| 247 | 
            +
            - `ddp_bucket_cap_mb`: None
         | 
| 248 | 
            +
            - `ddp_broadcast_buffers`: False
         | 
| 249 | 
            +
            - `dataloader_pin_memory`: True
         | 
| 250 | 
            +
            - `dataloader_persistent_workers`: False
         | 
| 251 | 
            +
            - `skip_memory_metrics`: True
         | 
| 252 | 
            +
            - `use_legacy_prediction_loop`: False
         | 
| 253 | 
            +
            - `push_to_hub`: False
         | 
| 254 | 
            +
            - `resume_from_checkpoint`: None
         | 
| 255 | 
            +
            - `hub_model_id`: None
         | 
| 256 | 
            +
            - `hub_strategy`: every_save
         | 
| 257 | 
            +
            - `hub_private_repo`: None
         | 
| 258 | 
            +
            - `hub_always_push`: False
         | 
| 259 | 
            +
            - `gradient_checkpointing`: False
         | 
| 260 | 
            +
            - `gradient_checkpointing_kwargs`: None
         | 
| 261 | 
            +
            - `include_inputs_for_metrics`: False
         | 
| 262 | 
            +
            - `include_for_metrics`: []
         | 
| 263 | 
            +
            - `eval_do_concat_batches`: True
         | 
| 264 | 
            +
            - `fp16_backend`: auto
         | 
| 265 | 
            +
            - `push_to_hub_model_id`: None
         | 
| 266 | 
            +
            - `push_to_hub_organization`: None
         | 
| 267 | 
            +
            - `mp_parameters`: 
         | 
| 268 | 
            +
            - `auto_find_batch_size`: False
         | 
| 269 | 
            +
            - `full_determinism`: False
         | 
| 270 | 
            +
            - `torchdynamo`: None
         | 
| 271 | 
            +
            - `ray_scope`: last
         | 
| 272 | 
            +
            - `ddp_timeout`: 1800
         | 
| 273 | 
            +
            - `torch_compile`: False
         | 
| 274 | 
            +
            - `torch_compile_backend`: None
         | 
| 275 | 
            +
            - `torch_compile_mode`: None
         | 
| 276 | 
            +
            - `include_tokens_per_second`: False
         | 
| 277 | 
            +
            - `include_num_input_tokens_seen`: False
         | 
| 278 | 
            +
            - `neftune_noise_alpha`: None
         | 
| 279 | 
            +
            - `optim_target_modules`: None
         | 
| 280 | 
            +
            - `batch_eval_metrics`: False
         | 
| 281 | 
            +
            - `eval_on_start`: False
         | 
| 282 | 
            +
            - `use_liger_kernel`: False
         | 
| 283 | 
            +
            - `eval_use_gather_object`: False
         | 
| 284 | 
            +
            - `average_tokens_across_devices`: False
         | 
| 285 | 
            +
            - `prompts`: None
         | 
| 286 | 
            +
            - `batch_sampler`: group_by_label
         | 
| 287 | 
            +
            - `multi_dataset_batch_sampler`: proportional
         | 
| 288 | 
            +
             | 
| 289 | 
            +
            </details>
         | 
| 290 | 
            +
             | 
| 291 | 
            +
            ### Training Logs
         | 
| 292 | 
            +
            | Epoch   | Step | Training Loss |
         | 
| 293 | 
            +
            |:-------:|:----:|:-------------:|
         | 
| 294 | 
            +
            | 4.125   | 100  | 0.0682        |
         | 
| 295 | 
            +
            | 8.25    | 200  | 0.0745        |
         | 
| 296 | 
            +
            | 12.375  | 300  | 0.0764        |
         | 
| 297 | 
            +
            | 16.5    | 400  | 0.0778        |
         | 
| 298 | 
            +
            | 20.625  | 500  | 0.077         |
         | 
| 299 | 
            +
            | 24.75   | 600  | 0.0767        |
         | 
| 300 | 
            +
            | 29.125  | 700  | 0.0738        |
         | 
| 301 | 
            +
            | 33.25   | 800  | 0.0701        |
         | 
| 302 | 
            +
            | 37.375  | 900  | 0.0677        |
         | 
| 303 | 
            +
            | 41.5    | 1000 | 0.0689        |
         | 
| 304 | 
            +
            | 45.625  | 1100 | 0.0661        |
         | 
| 305 | 
            +
            | 49.75   | 1200 | 0.0677        |
         | 
| 306 | 
            +
            | 54.125  | 1300 | 0.0627        |
         | 
| 307 | 
            +
            | 58.25   | 1400 | 0.0629        |
         | 
| 308 | 
            +
            | 62.375  | 1500 | 0.0625        |
         | 
| 309 | 
            +
            | 66.5    | 1600 | 0.0655        |
         | 
| 310 | 
            +
            | 70.625  | 1700 | 0.0645        |
         | 
| 311 | 
            +
            | 74.75   | 1800 | 0.0595        |
         | 
| 312 | 
            +
            | 79.125  | 1900 | 0.0608        |
         | 
| 313 | 
            +
            | 83.25   | 2000 | 0.0614        |
         | 
| 314 | 
            +
            | 87.375  | 2100 | 0.0567        |
         | 
| 315 | 
            +
            | 91.5    | 2200 | 0.0612        |
         | 
| 316 | 
            +
            | 95.625  | 2300 | 0.0599        |
         | 
| 317 | 
            +
            | 99.75   | 2400 | 0.059         |
         | 
| 318 | 
            +
            | 104.125 | 2500 | 0.0547        |
         | 
| 319 | 
            +
            | 108.25  | 2600 | 0.0571        |
         | 
| 320 | 
            +
            | 112.375 | 2700 | 0.0543        |
         | 
| 321 | 
            +
            | 116.5   | 2800 | 0.0574        |
         | 
| 322 | 
            +
            | 120.625 | 2900 | 0.0561        |
         | 
| 323 | 
            +
            | 124.75  | 3000 | 0.0534        |
         | 
| 324 | 
            +
            | 129.125 | 3100 | 0.0554        |
         | 
| 325 | 
            +
            | 133.25  | 3200 | 0.0507        |
         | 
| 326 | 
            +
            | 137.375 | 3300 | 0.0533        |
         | 
| 327 | 
            +
            | 141.5   | 3400 | 0.05          |
         | 
| 328 | 
            +
            | 145.625 | 3500 | 0.0569        |
         | 
| 329 | 
            +
            | 149.75  | 3600 | 0.0551        |
         | 
| 330 | 
            +
            | 154.125 | 3700 | 0.0558        |
         | 
| 331 | 
            +
            | 158.25  | 3800 | 0.0539        |
         | 
| 332 | 
            +
            | 162.375 | 3900 | 0.0498        |
         | 
| 333 | 
            +
            | 166.5   | 4000 | 0.0512        |
         | 
| 334 | 
            +
            | 170.625 | 4100 | 0.0481        |
         | 
| 335 | 
            +
            | 174.75  | 4200 | 0.0492        |
         | 
| 336 | 
            +
            | 179.125 | 4300 | 0.0513        |
         | 
| 337 | 
            +
            | 183.25  | 4400 | 0.0474        |
         | 
| 338 | 
            +
            | 187.375 | 4500 | 0.0491        |
         | 
| 339 | 
            +
            | 191.5   | 4600 | 0.0513        |
         | 
| 340 | 
            +
            | 195.625 | 4700 | 0.0453        |
         | 
| 341 | 
            +
            | 199.75  | 4800 | 0.0453        |
         | 
| 342 | 
            +
            | 204.125 | 4900 | 0.0489        |
         | 
| 343 | 
            +
            | 208.25  | 5000 | 0.0481        |
         | 
| 344 | 
            +
            | 212.375 | 5100 | 0.0498        |
         | 
| 345 | 
            +
            | 216.5   | 5200 | 0.044         |
         | 
| 346 | 
            +
            | 220.625 | 5300 | 0.0486        |
         | 
| 347 | 
            +
            | 224.75  | 5400 | 0.0399        |
         | 
| 348 | 
            +
            | 229.125 | 5500 | 0.0384        |
         | 
| 349 | 
            +
            | 233.25  | 5600 | 0.0428        |
         | 
| 350 | 
            +
            | 237.375 | 5700 | 0.0447        |
         | 
| 351 | 
            +
            | 241.5   | 5800 | 0.0479        |
         | 
| 352 | 
            +
            | 245.625 | 5900 | 0.0434        |
         | 
| 353 | 
            +
            | 249.75  | 6000 | 0.0442        |
         | 
| 354 | 
            +
             | 
| 355 | 
            +
             | 
| 356 | 
            +
            ### Framework Versions
         | 
| 357 | 
            +
            - Python: 3.11.12
         | 
| 358 | 
            +
            - Sentence Transformers: 3.4.1
         | 
| 359 | 
            +
            - Transformers: 4.51.3
         | 
| 360 | 
            +
            - PyTorch: 2.6.0+cu124
         | 
| 361 | 
            +
            - Accelerate: 1.5.2
         | 
| 362 | 
            +
            - Datasets: 3.5.0
         | 
| 363 | 
            +
            - Tokenizers: 0.21.1
         | 
| 364 | 
            +
             | 
| 365 | 
            +
            ## Citation
         | 
| 366 | 
            +
             | 
| 367 | 
            +
            ### BibTeX
         | 
| 368 | 
            +
             | 
| 369 | 
            +
            #### Sentence Transformers
         | 
| 370 | 
            +
            ```bibtex
         | 
| 371 | 
            +
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 372 | 
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 373 | 
            +
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 374 | 
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 375 | 
            +
                month = "11",
         | 
| 376 | 
            +
                year = "2019",
         | 
| 377 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 378 | 
            +
                url = "https://arxiv.org/abs/1908.10084",
         | 
| 379 | 
            +
            }
         | 
| 380 | 
            +
            ```
         | 
| 381 | 
            +
             | 
| 382 | 
            +
            #### CustomBatchAllTripletLoss
         | 
| 383 | 
            +
            ```bibtex
         | 
| 384 | 
            +
            @misc{hermans2017defense,
         | 
| 385 | 
            +
                title={In Defense of the Triplet Loss for Person Re-Identification},
         | 
| 386 | 
            +
                author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
         | 
| 387 | 
            +
                year={2017},
         | 
| 388 | 
            +
                eprint={1703.07737},
         | 
| 389 | 
            +
                archivePrefix={arXiv},
         | 
| 390 | 
            +
                primaryClass={cs.CV}
         | 
| 391 | 
            +
            }
         | 
| 392 | 
            +
            ```
         | 
| 393 | 
            +
             | 
| 394 | 
            +
            <!--
         | 
| 395 | 
            +
            ## Glossary
         | 
| 396 | 
            +
             | 
| 397 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 398 | 
            +
            -->
         | 
| 399 | 
            +
             | 
| 400 | 
            +
            <!--
         | 
| 401 | 
            +
            ## Model Card Authors
         | 
| 402 | 
            +
             | 
| 403 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 404 | 
            +
            -->
         | 
| 405 | 
            +
             | 
| 406 | 
            +
            <!--
         | 
| 407 | 
            +
            ## Model Card Contact
         | 
| 408 | 
            +
             | 
| 409 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 410 | 
             
            -->
         | 
    	
        config.json
    CHANGED
    
    | @@ -1,24 +1,25 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
              " | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
               | 
| 6 | 
            -
              " | 
| 7 | 
            -
              " | 
| 8 | 
            -
              " | 
| 9 | 
            -
              " | 
| 10 | 
            -
              " | 
| 11 | 
            -
              " | 
| 12 | 
            -
              " | 
| 13 | 
            -
              " | 
| 14 | 
            -
              " | 
| 15 | 
            -
              " | 
| 16 | 
            -
              " | 
| 17 | 
            -
              " | 
| 18 | 
            -
              " | 
| 19 | 
            -
              " | 
| 20 | 
            -
              " | 
| 21 | 
            -
              " | 
| 22 | 
            -
              " | 
| 23 | 
            -
              " | 
| 24 | 
            -
             | 
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "C:/Project/Detomo/2025/meisai-check/meisai-api/meisaicheck-api/data/model\\Detomo/cl-nagoya-sup-simcse-ja-nss-v1_1-onnx-quantized",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "BertModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 7 | 
            +
              "classifier_dropout": null,
         | 
| 8 | 
            +
              "hidden_act": "gelu",
         | 
| 9 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 10 | 
            +
              "hidden_size": 768,
         | 
| 11 | 
            +
              "initializer_range": 0.02,
         | 
| 12 | 
            +
              "intermediate_size": 3072,
         | 
| 13 | 
            +
              "layer_norm_eps": 1e-12,
         | 
| 14 | 
            +
              "max_position_embeddings": 512,
         | 
| 15 | 
            +
              "model_type": "bert",
         | 
| 16 | 
            +
              "num_attention_heads": 12,
         | 
| 17 | 
            +
              "num_hidden_layers": 12,
         | 
| 18 | 
            +
              "pad_token_id": 0,
         | 
| 19 | 
            +
              "position_embedding_type": "absolute",
         | 
| 20 | 
            +
              "torch_dtype": "float32",
         | 
| 21 | 
            +
              "transformers_version": "4.48.3",
         | 
| 22 | 
            +
              "type_vocab_size": 2,
         | 
| 23 | 
            +
              "use_cache": true,
         | 
| 24 | 
            +
              "vocab_size": 32768
         | 
| 25 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    CHANGED
    
    | @@ -1,10 +1,10 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
              "__version__": {
         | 
| 3 | 
            -
                "sentence_transformers": "3. | 
| 4 | 
            -
                "transformers": "4. | 
| 5 | 
            -
                "pytorch": "2.6.0+ | 
| 6 | 
            -
              },
         | 
| 7 | 
            -
              "prompts": {},
         | 
| 8 | 
            -
              "default_prompt_name": null,
         | 
| 9 | 
            -
              "similarity_fn_name": "cosine"
         | 
| 10 | 
             
            }
         | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "3.3.1",
         | 
| 4 | 
            +
                "transformers": "4.48.3",
         | 
| 5 | 
            +
                "pytorch": "2.6.0+cu126"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "prompts": {},
         | 
| 8 | 
            +
              "default_prompt_name": null,
         | 
| 9 | 
            +
              "similarity_fn_name": "cosine"
         | 
| 10 | 
             
            }
         | 
    	
        modules.json
    CHANGED
    
    | @@ -1,14 +1,14 @@ | |
| 1 | 
            -
            [
         | 
| 2 | 
            -
              {
         | 
| 3 | 
            -
                "idx": 0,
         | 
| 4 | 
            -
                "name": "0",
         | 
| 5 | 
            -
                "path": "",
         | 
| 6 | 
            -
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            -
              },
         | 
| 8 | 
            -
              {
         | 
| 9 | 
            -
                "idx": 1,
         | 
| 10 | 
            -
                "name": "1",
         | 
| 11 | 
            -
                "path": "1_Pooling",
         | 
| 12 | 
            -
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            -
              }
         | 
| 14 | 
             
            ]
         | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              }
         | 
| 14 | 
             
            ]
         | 
    	
        onnx/model.onnx
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1391fa06bbe6a33b9fbb2be41be5a3316d8d3f7d920df1c7e469750450b249cb
         | 
| 3 | 
            +
            size 442744328
         | 
    	
        sentence_bert_config.json
    CHANGED
    
    | @@ -1,4 +1,4 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
              "max_seq_length": 512,
         | 
| 3 | 
            -
              "do_lower_case": false
         | 
| 4 | 
             
            }
         | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_seq_length": 512,
         | 
| 3 | 
            +
              "do_lower_case": false
         | 
| 4 | 
             
            }
         | 
    	
        special_tokens_map.json
    CHANGED
    
    | @@ -1,37 +1,37 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
              "cls_token": {
         | 
| 3 | 
            -
                "content": "[CLS]",
         | 
| 4 | 
            -
                "lstrip": false,
         | 
| 5 | 
            -
                "normalized": false,
         | 
| 6 | 
            -
                "rstrip": false,
         | 
| 7 | 
            -
                "single_word": false
         | 
| 8 | 
            -
              },
         | 
| 9 | 
            -
              "mask_token": {
         | 
| 10 | 
            -
                "content": "[MASK]",
         | 
| 11 | 
            -
                "lstrip": false,
         | 
| 12 | 
            -
                "normalized": false,
         | 
| 13 | 
            -
                "rstrip": false,
         | 
| 14 | 
            -
                "single_word": false
         | 
| 15 | 
            -
              },
         | 
| 16 | 
            -
              "pad_token": {
         | 
| 17 | 
            -
                "content": "[PAD]",
         | 
| 18 | 
            -
                "lstrip": false,
         | 
| 19 | 
            -
                "normalized": false,
         | 
| 20 | 
            -
                "rstrip": false,
         | 
| 21 | 
            -
                "single_word": false
         | 
| 22 | 
            -
              },
         | 
| 23 | 
            -
              "sep_token": {
         | 
| 24 | 
            -
                "content": "[SEP]",
         | 
| 25 | 
            -
                "lstrip": false,
         | 
| 26 | 
            -
                "normalized": false,
         | 
| 27 | 
            -
                "rstrip": false,
         | 
| 28 | 
            -
                "single_word": false
         | 
| 29 | 
            -
              },
         | 
| 30 | 
            -
              "unk_token": {
         | 
| 31 | 
            -
                "content": "[UNK]",
         | 
| 32 | 
            -
                "lstrip": false,
         | 
| 33 | 
            -
                "normalized": false,
         | 
| 34 | 
            -
                "rstrip": false,
         | 
| 35 | 
            -
                "single_word": false
         | 
| 36 | 
            -
              }
         | 
| 37 | 
            -
            }
         | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "cls_token": {
         | 
| 3 | 
            +
                "content": "[CLS]",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "mask_token": {
         | 
| 10 | 
            +
                "content": "[MASK]",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "[PAD]",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "sep_token": {
         | 
| 24 | 
            +
                "content": "[SEP]",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              },
         | 
| 30 | 
            +
              "unk_token": {
         | 
| 31 | 
            +
                "content": "[UNK]",
         | 
| 32 | 
            +
                "lstrip": false,
         | 
| 33 | 
            +
                "normalized": false,
         | 
| 34 | 
            +
                "rstrip": false,
         | 
| 35 | 
            +
                "single_word": false
         | 
| 36 | 
            +
              }
         | 
| 37 | 
            +
            }
         | 
    	
        tokenizer_config.json
    CHANGED
    
    | @@ -1,64 +1,64 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
              "added_tokens_decoder": {
         | 
| 3 | 
            -
                "0": {
         | 
| 4 | 
            -
                  "content": "[PAD]",
         | 
| 5 | 
            -
                  "lstrip": false,
         | 
| 6 | 
            -
                  "normalized": false,
         | 
| 7 | 
            -
                  "rstrip": false,
         | 
| 8 | 
            -
                  "single_word": false,
         | 
| 9 | 
            -
                  "special": true
         | 
| 10 | 
            -
                },
         | 
| 11 | 
            -
                "1": {
         | 
| 12 | 
            -
                  "content": "[UNK]",
         | 
| 13 | 
            -
                  "lstrip": false,
         | 
| 14 | 
            -
                  "normalized": false,
         | 
| 15 | 
            -
                  "rstrip": false,
         | 
| 16 | 
            -
                  "single_word": false,
         | 
| 17 | 
            -
                  "special": true
         | 
| 18 | 
            -
                },
         | 
| 19 | 
            -
                "2": {
         | 
| 20 | 
            -
                  "content": "[CLS]",
         | 
| 21 | 
            -
                  "lstrip": false,
         | 
| 22 | 
            -
                  "normalized": false,
         | 
| 23 | 
            -
                  "rstrip": false,
         | 
| 24 | 
            -
                  "single_word": false,
         | 
| 25 | 
            -
                  "special": true
         | 
| 26 | 
            -
                },
         | 
| 27 | 
            -
                "3": {
         | 
| 28 | 
            -
                  "content": "[SEP]",
         | 
| 29 | 
            -
                  "lstrip": false,
         | 
| 30 | 
            -
                  "normalized": false,
         | 
| 31 | 
            -
                  "rstrip": false,
         | 
| 32 | 
            -
                  "single_word": false,
         | 
| 33 | 
            -
                  "special": true
         | 
| 34 | 
            -
                },
         | 
| 35 | 
            -
                "4": {
         | 
| 36 | 
            -
                  "content": "[MASK]",
         | 
| 37 | 
            -
                  "lstrip": false,
         | 
| 38 | 
            -
                  "normalized": false,
         | 
| 39 | 
            -
                  "rstrip": false,
         | 
| 40 | 
            -
                  "single_word": false,
         | 
| 41 | 
            -
                  "special": true
         | 
| 42 | 
            -
                }
         | 
| 43 | 
            -
              },
         | 
| 44 | 
            -
              "clean_up_tokenization_spaces": true,
         | 
| 45 | 
            -
              "cls_token": "[CLS]",
         | 
| 46 | 
            -
              "do_lower_case": false,
         | 
| 47 | 
            -
              "do_subword_tokenize": true,
         | 
| 48 | 
            -
              "do_word_tokenize": true,
         | 
| 49 | 
            -
              "extra_special_tokens": {},
         | 
| 50 | 
            -
              "jumanpp_kwargs": null,
         | 
| 51 | 
            -
              "mask_token": "[MASK]",
         | 
| 52 | 
            -
              "mecab_kwargs": {
         | 
| 53 | 
            -
                "mecab_dic": "unidic_lite"
         | 
| 54 | 
            -
              },
         | 
| 55 | 
            -
              "model_max_length": 512,
         | 
| 56 | 
            -
              "never_split": null,
         | 
| 57 | 
            -
              "pad_token": "[PAD]",
         | 
| 58 | 
            -
              "sep_token": "[SEP]",
         | 
| 59 | 
            -
              "subword_tokenizer_type": "wordpiece",
         | 
| 60 | 
            -
              "sudachi_kwargs": null,
         | 
| 61 | 
            -
              "tokenizer_class": "BertJapaneseTokenizer",
         | 
| 62 | 
            -
              "unk_token": "[UNK]",
         | 
| 63 | 
            -
              "word_tokenizer_type": "mecab"
         | 
| 64 | 
            -
            }
         | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "[PAD]",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "[UNK]",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "[CLS]",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "3": {
         | 
| 28 | 
            +
                  "content": "[SEP]",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "4": {
         | 
| 36 | 
            +
                  "content": "[MASK]",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 45 | 
            +
              "cls_token": "[CLS]",
         | 
| 46 | 
            +
              "do_lower_case": false,
         | 
| 47 | 
            +
              "do_subword_tokenize": true,
         | 
| 48 | 
            +
              "do_word_tokenize": true,
         | 
| 49 | 
            +
              "extra_special_tokens": {},
         | 
| 50 | 
            +
              "jumanpp_kwargs": null,
         | 
| 51 | 
            +
              "mask_token": "[MASK]",
         | 
| 52 | 
            +
              "mecab_kwargs": {
         | 
| 53 | 
            +
                "mecab_dic": "unidic_lite"
         | 
| 54 | 
            +
              },
         | 
| 55 | 
            +
              "model_max_length": 512,
         | 
| 56 | 
            +
              "never_split": null,
         | 
| 57 | 
            +
              "pad_token": "[PAD]",
         | 
| 58 | 
            +
              "sep_token": "[SEP]",
         | 
| 59 | 
            +
              "subword_tokenizer_type": "wordpiece",
         | 
| 60 | 
            +
              "sudachi_kwargs": null,
         | 
| 61 | 
            +
              "tokenizer_class": "BertJapaneseTokenizer",
         | 
| 62 | 
            +
              "unk_token": "[UNK]",
         | 
| 63 | 
            +
              "word_tokenizer_type": "mecab"
         | 
| 64 | 
            +
            }
         | 
    	
        vocab.txt
    CHANGED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 

