license: apache-2.0
base_model: Derify/ModChemBERT-MLM-DAPT
datasets:
- Derify/augmented_canonical_druglike_QED_Pfizer_15M
metrics:
- roc_auc
- rmse
library_name: transformers
tags:
- modernbert
- ModChemBERT
- cheminformatics
- chemical-language-model
- molecular-property-prediction
- mergekit
- merge
pipeline_tag: fill-mask
model-index:
- name: Derify/ModChemBERT-MLM
results:
- task:
type: text-classification
name: Classification (ROC AUC)
dataset:
name: BACE
type: BACE
metrics:
- type: roc_auc
value: 0.8346
- task:
type: text-classification
name: Classification (ROC AUC)
dataset:
name: BBBP
type: BBBP
metrics:
- type: roc_auc
value: 0.7573
- task:
type: text-classification
name: Classification (ROC AUC)
dataset:
name: CLINTOX
type: CLINTOX
metrics:
- type: roc_auc
value: 0.9938
- task:
type: text-classification
name: Classification (ROC AUC)
dataset:
name: HIV
type: HIV
metrics:
- type: roc_auc
value: 0.7737
- task:
type: text-classification
name: Classification (ROC AUC)
dataset:
name: SIDER
type: SIDER
metrics:
- type: roc_auc
value: 0.66
- task:
type: text-classification
name: Classification (ROC AUC)
dataset:
name: TOX21
type: TOX21
metrics:
- type: roc_auc
value: 0.7518
- task:
type: regression
name: Regression (RMSE)
dataset:
name: BACE
type: BACE
metrics:
- type: rmse
value: 0.9665
- task:
type: regression
name: Regression (RMSE)
dataset:
name: CLEARANCE
type: CLEARANCE
metrics:
- type: rmse
value: 44.0137
- task:
type: regression
name: Regression (RMSE)
dataset:
name: ESOL
type: ESOL
metrics:
- type: rmse
value: 0.8158
- task:
type: regression
name: Regression (RMSE)
dataset:
name: FREESOLV
type: FREESOLV
metrics:
- type: rmse
value: 0.4979
- task:
type: regression
name: Regression (RMSE)
dataset:
name: LIPO
type: LIPO
metrics:
- type: rmse
value: 0.6505
ModChemBERT: ModernBERT as a Chemical Language Model
ModChemBERT is a ModernBERT-based chemical language model (CLM), trained on SMILES strings for masked language modeling (MLM) and downstream molecular property prediction (classification & regression).
Usage
Load Model
from transformers import AutoModelForMaskedLM, AutoTokenizer
model_id = "Derify/ModChemBERT"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(
model_id,
trust_remote_code=True,
dtype="float16",
device_map="auto",
)
Fill-Mask Pipeline
from transformers import pipeline
fill = pipeline("fill-mask", model=model, tokenizer=tokenizer)
print(fill("c1ccccc1[MASK]"))
Intended Use
- Primary: Research and development for molecular property prediction, experimentation with pooling strategies, and as a foundational model for downstream applications.
- Appropriate for: Binary / multi-class classification (e.g., toxicity, activity) and single-task or multi-task regression (e.g., solubility, clearance) after fine-tuning.
- Not intended for generating novel molecules.
Limitations
- Out-of-domain performance may degrade for: very long (>128 token) SMILES, inorganic / organometallic compounds, polymers, or charged / enumerated tautomers are not well represented in training.
- No guarantee of synthesizability, safety, or biological efficacy.
Ethical Considerations & Responsible Use
- Potential biases arise from training corpora skewed to drug-like space.
- Do not deploy in clinical or regulatory settings without rigorous, domain-specific validation.
Architecture
- Backbone: ModernBERT
- Hidden size: 768
- Intermediate size: 1152
- Encoder Layers: 22
- Attention heads: 12
- Max sequence length: 256 tokens (MLM primarily trained with 128-token sequences)
- Vocabulary: BPE tokenizer using MolFormer's vocab (2362 tokens)
Pooling (Classifier / Regressor Head)
Kallergis et al. [1] demonstrated that the CLM embedding method prior to the prediction head can significantly impact downstream performance.
Behrendt et al. [2] noted that the last few layers contain task-specific information and that pooling methods leveraging information from multiple layers can enhance model performance. Their results further demonstrated that the max_seq_mha pooling method was particularly effective in low-data regimes, which is often the case for molecular property prediction tasks.
Multiple pooling strategies are supported by ModChemBERT to explore their impact on downstream performance:
cls: Last layer [CLS]mean: Mean over last hidden layermax_cls: Max over last k layers of [CLS]cls_mha: MHA with [CLS] as querymax_seq_mha: MHA with max pooled sequence as KV and max pooled [CLS] as querysum_mean: Sum over all layers then mean tokenssum_sum: Sum over all layers then sum tokensmean_mean: Mean over all layers then mean tokensmean_sum: Mean over all layers then sum tokensmax_seq_mean: Max over last k layers then mean tokens
Training Pipeline
Rationale for MTR Stage
Following Sultan et al. [3], multi-task regression (physicochemical properties) biases the latent space toward ADME-related representations prior to narrow TAFT specialization. Sultan et al. observed that MLM + DAPT (MTR) outperforms MLM-only, MTR-only, and MTR + DAPT (MTR).
Checkpoint Averaging Motivation
Inspired by ModernBERT [4], JaColBERTv2.5 [5], and Llama 3.1 [6], where results show that model merging can enhance generalization or performance while mitigating overfitting to any single fine-tune or annealing checkpoint.
Datasets
- Pretraining: Derify/augmented_canonical_druglike_QED_Pfizer_15M
- Domain Adaptive Pretraining (DAPT) & Task Adaptive Fine-tuning (TAFT): ADME + AstraZeneca datasets (10 tasks) with scaffold splits from DA4MT pipeline (see domain-adaptation-molecular-transformers)
- Benchmarking: ChemBERTa-3 [7] tasks (BACE, BBBP, TOX21, HIV, SIDER, CLINTOX for classification; ESOL, FREESOLV, LIPO, BACE, CLEARANCE for regression)
Benchmarking
Benchmarks were conducted with the ChemBERTa-3 framework using DeepChem scaffold splits. Each task was trained for 100 epochs with 3 random seeds.
Evaluation Methodology
- Classification Metric: ROC AUC.
- Regression Metric: RMSE.
- Aggregation: Mean ± standard deviation of the triplicate results.
- Input Constraints: SMILES truncated / filtered to ≤200 tokens, following the MolFormer paper's recommendation.
Results
Click to expand
Classification Datasets (ROC AUC - Higher is better)
| Model | BACE↑ | BBBP↑ | CLINTOX↑ | HIV↑ | SIDER↑ | TOX21↑ | AVG† |
|---|---|---|---|---|---|---|---|
| Tasks | 1 | 1 | 2 | 1 | 27 | 12 | |
| ChemBERTa-100M-MLM* | 0.781 ± 0.019 | 0.700 ± 0.027 | 0.979 ± 0.022 | 0.740 ± 0.013 | 0.611 ± 0.002 | 0.718 ± 0.011 | 0.7548 |
| c3-MoLFormer-1.1B* | 0.819 ± 0.019 | 0.735 ± 0.019 | 0.839 ± 0.013 | 0.762 ± 0.005 | 0.618 ± 0.005 | 0.723 ± 0.012 | 0.7493 |
| MoLFormer-LHPC* | 0.887 ± 0.004 | 0.908 ± 0.013 | 0.993 ± 0.004 | 0.750 ± 0.003 | 0.622 ± 0.007 | 0.791 ± 0.014 | 0.8252 |
| ------------------------- | ----------------- | ----------------- | ------------------- | ------------------- | ------------------- | ----------------- | ------ |
| MLM | 0.8065 ± 0.0103 | 0.7222 ± 0.0150 | 0.9709 ± 0.0227 | 0.7800 ± 0.0133 | 0.6419 ± 0.0113 | 0.7400 ± 0.0044 | 0.7769 |
| MLM + DAPT | 0.8224 ± 0.0156 | 0.7402 ± 0.0095 | 0.9820 ± 0.0138 | 0.7702 ± 0.0020 | 0.6303 ± 0.0039 | 0.7360 ± 0.0036 | 0.7802 |
| MLM + TAFT | 0.7924 ± 0.0155 | 0.7282 ± 0.0058 | 0.9725 ± 0.0213 | 0.7770 ± 0.0047 | 0.6542 ± 0.0128 | 0.7646 ± 0.0039 | 0.7815 |
| MLM + DAPT + TAFT | 0.8213 ± 0.0051 | 0.7356 ± 0.0094 | 0.9664 ± 0.0202 | 0.7750 ± 0.0048 | 0.6415 ± 0.0094 | 0.7263 ± 0.0036 | 0.7777 |
| MLM + DAPT + TAFT OPT | 0.8346 ± 0.0045 | 0.7573 ± 0.0120 | 0.9938 ± 0.0017 | 0.7737 ± 0.0034 | 0.6600 ± 0.0061 | 0.7518 ± 0.0047 | 0.7952 |
Regression Datasets (RMSE - Lower is better)
| Model | BACE↓ | CLEARANCE↓ | ESOL↓ | FREESOLV↓ | LIPO↓ | AVG‡ |
|---|---|---|---|---|---|---|
| Tasks | 1 | 1 | 1 | 1 | 1 | |
| ChemBERTa-100M-MLM* | 1.011 ± 0.038 | 51.582 ± 3.079 | 0.920 ± 0.011 | 0.536 ± 0.016 | 0.758 ± 0.013 | 0.8063 / 10.9614 |
| c3-MoLFormer-1.1B* | 1.094 ± 0.126 | 52.058 ± 2.767 | 0.829 ± 0.019 | 0.572 ± 0.023 | 0.728 ± 0.016 | 0.8058 / 11.0562 |
| MoLFormer-LHPC* | 1.201 ± 0.100 | 45.74 ± 2.637 | 0.848 ± 0.031 | 0.683 ± 0.040 | 0.895 ± 0.080 | 0.9068 / 9.8734 |
| ------------------------- | ------------------- | -------------------- | ------------------- | ------------------- | ------------------- | ---------------- |
| MLM | 1.0893 ± 0.1319 | 49.0005 ± 1.2787 | 0.8456 ± 0.0406 | 0.5491 ± 0.0134 | 0.7147 ± 0.0062 | 0.7997 / 10.4398 |
| MLM + DAPT | 0.9931 ± 0.0258 | 45.4951 ± 0.7112 | 0.9319 ± 0.0153 | 0.6049 ± 0.0666 | 0.6874 ± 0.0040 | 0.8043 / 9.7425 |
| MLM + TAFT | 1.0304 ± 0.1146 | 47.8418 ± 0.4070 | 0.7669 ± 0.0024 | 0.5293 ± 0.0267 | 0.6708 ± 0.0074 | 0.7493 / 10.1678 |
| MLM + DAPT + TAFT | 0.9713 ± 0.0224 | 42.8010 ± 3.3475 | 0.8169 ± 0.0268 | 0.5445 ± 0.0257 | 0.6820 ± 0.0028 | 0.7537 / 9.1631 |
| MLM + DAPT + TAFT OPT | 0.9665 ± 0.0250 | 44.0137 ± 1.1110 | 0.8158 ± 0.0115 | 0.4979 ± 0.0158 | 0.6505 ± 0.0126 | 0.7327 / 9.3889 |
Bold indicates the best result in the column; italic indicates the best result among ModChemBERT checkpoints.
* Published results from the ChemBERTa-3 [7] paper for optimized chemical language models using DeepChem scaffold splits.
† AVG column shows the mean score across all classification tasks.
‡ AVG column shows the mean scores across all regression tasks without and with the clearance score.
Optimized ModChemBERT Hyperparameters
Click to expand
TAFT Datasets
Optimal parameters (per dataset) for the MLM + DAPT + TAFT OPT merged model:
| Dataset | Learning Rate | Batch Size | Warmup Ratio | Classifier Pooling | Last k Layers |
|---|---|---|---|---|---|
| adme_microsom_stab_h | 3e-5 | 8 | 0.0 | max_seq_mean | 5 |
| adme_microsom_stab_r | 3e-5 | 16 | 0.2 | max_cls | 3 |
| adme_permeability | 3e-5 | 8 | 0.0 | max_cls | 3 |
| adme_ppb_h | 1e-5 | 32 | 0.1 | max_seq_mean | 5 |
| adme_ppb_r | 1e-5 | 32 | 0.0 | sum_mean | N/A |
| adme_solubility | 3e-5 | 32 | 0.0 | sum_mean | N/A |
| astrazeneca_CL | 3e-5 | 8 | 0.1 | max_seq_mha | 3 |
| astrazeneca_LogD74 | 1e-5 | 8 | 0.0 | max_seq_mean | 5 |
| astrazeneca_PPB | 1e-5 | 32 | 0.0 | max_cls | 3 |
| astrazeneca_Solubility | 1e-5 | 32 | 0.0 | max_seq_mean | 5 |
Benchmarking Datasets
Optimal parameters (per dataset) for the MLM + DAPT + TAFT OPT merged model:
| Dataset | Batch Size | Classifier Pooling | Last k Layers | Pooling Attention Dropout | Classifier Dropout | Embedding Dropout |
|---|---|---|---|---|---|---|
| bace_classification | 32 | max_seq_mha | 3 | 0.0 | 0.0 | 0.0 |
| bbbp | 64 | max_cls | 3 | 0.1 | 0.0 | 0.0 |
| clintox | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
| hiv | 32 | max_seq_mha | 3 | 0.0 | 0.0 | 0.0 |
| sider | 32 | mean | N/A | 0.1 | 0.0 | 0.1 |
| tox21 | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
| base_regression | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
| clearance | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
| esol | 64 | sum_mean | N/A | 0.1 | 0.0 | 0.1 |
| freesolv | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
| lipo | 32 | max_seq_mha | 3 | 0.1 | 0.1 | 0.1 |
Hardware
Training and experiments were performed on 2 NVIDIA RTX 3090 GPUs.
Citation
If you use ModChemBERT in your research, please cite the checkpoint and the following:
@software{cortes-2025-modchembert,
author = {Emmanuel Cortes},
title = {ModChemBERT: ModernBERT as a Chemical Language Model},
year = {2025},
publisher = {GitHub},
howpublished = {GitHub repository},
url = {https://github.com/emapco/ModChemBERT}
}
References
- Kallergis, Georgios, et al. "Domain adaptable language modeling of chemical compounds identifies potent pathoblockers for Pseudomonas aeruginosa." Communications Chemistry 8.1 (2025): 114.
- Behrendt, Maike, Stefan Sylvius Wagner, and Stefan Harmeling. "MaxPoolBERT: Enhancing BERT Classification via Layer-and Token-Wise Aggregation." arXiv preprint arXiv:2505.15696 (2025).
- Sultan, Afnan, et al. "Transformers for molecular property prediction: Domain adaptation efficiently improves performance." arXiv preprint arXiv:2503.03360 (2025).
- Warner, Benjamin, et al. "Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference." arXiv preprint arXiv:2412.13663 (2024).
- Clavié, Benjamin. "JaColBERTv2.5: Optimising Multi-Vector Retrievers to Create State-of-the-Art Japanese Retrievers with Constrained Resources." Journal of Natural Language Processing 32.1 (2025): 176-218.
- Grattafiori, Aaron, et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).
- Singh, Riya, et al. "ChemBERTa-3: An Open Source Training Framework for Chemical Foundation Models." (2025).