eacortes commited on
Commit
6a7a58f
·
verified ·
1 Parent(s): 68f5a86

Upload 19 files

Browse files
Files changed (19) hide show
  1. README.md +315 -3
  2. config.json +54 -0
  3. configuration_modchembert.py +84 -0
  4. logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_bace_classification_20250923_084801.log +351 -0
  5. logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_bbbp_epochs100_batch_size64_20250923_021951.log +355 -0
  6. logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_clintox_epochs100_batch_size32_20250923_040853.log +359 -0
  7. logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_hiv_epochs100_batch_size32_20250923_080632.log +329 -0
  8. logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_sider_epochs100_batch_size32_20250923_034834.log +363 -0
  9. logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_tox21_epochs100_batch_size32_20250923_023906.log +329 -0
  10. logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_bace_regression_epochs100_batch_size32_20250923_015823.log +325 -0
  11. logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_clearance_epochs100_batch_size32_20250923_022405.log +331 -0
  12. logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_delaney_epochs100_batch_size64_20250923_024047.log +413 -0
  13. logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_freesolv_epochs100_batch_size32_20250923_025415.log +365 -0
  14. logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_lipo_epochs100_batch_size32_20250923_094951.log +365 -0
  15. model.safetensors +3 -0
  16. modeling_modchembert.py +554 -0
  17. special_tokens_map.json +37 -0
  18. tokenizer.json +2554 -0
  19. tokenizer_config.json +53 -0
README.md CHANGED
@@ -1,3 +1,315 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: Derify/ModChemBERT-MLM-DAPT
4
+ datasets:
5
+ - Derify/augmented_canonical_druglike_QED_Pfizer_15M
6
+ metrics:
7
+ - roc_auc
8
+ - rmse
9
+ library_name: transformers
10
+ tags:
11
+ - modernbert
12
+ - ModChemBERT
13
+ - cheminformatics
14
+ - chemical-language-model
15
+ - molecular-property-prediction
16
+ - mergekit
17
+ - merge
18
+ pipeline_tag: fill-mask
19
+ model-index:
20
+ - name: Derify/ModChemBERT-MLM
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Classification (ROC AUC)
25
+ dataset:
26
+ name: BACE
27
+ type: BACE
28
+ metrics:
29
+ - type: roc_auc
30
+ value: 0.8346
31
+ - task:
32
+ type: text-classification
33
+ name: Classification (ROC AUC)
34
+ dataset:
35
+ name: BBBP
36
+ type: BBBP
37
+ metrics:
38
+ - type: roc_auc
39
+ value: 0.7573
40
+ - task:
41
+ type: text-classification
42
+ name: Classification (ROC AUC)
43
+ dataset:
44
+ name: CLINTOX
45
+ type: CLINTOX
46
+ metrics:
47
+ - type: roc_auc
48
+ value: 0.9938
49
+ - task:
50
+ type: text-classification
51
+ name: Classification (ROC AUC)
52
+ dataset:
53
+ name: HIV
54
+ type: HIV
55
+ metrics:
56
+ - type: roc_auc
57
+ value: 0.7737
58
+ - task:
59
+ type: text-classification
60
+ name: Classification (ROC AUC)
61
+ dataset:
62
+ name: SIDER
63
+ type: SIDER
64
+ metrics:
65
+ - type: roc_auc
66
+ value: 0.6600
67
+ - task:
68
+ type: text-classification
69
+ name: Classification (ROC AUC)
70
+ dataset:
71
+ name: TOX21
72
+ type: TOX21
73
+ metrics:
74
+ - type: roc_auc
75
+ value: 0.7518
76
+ - task:
77
+ type: regression
78
+ name: Regression (RMSE)
79
+ dataset:
80
+ name: BACE
81
+ type: BACE
82
+ metrics:
83
+ - type: rmse
84
+ value: 0.9665
85
+ - task:
86
+ type: regression
87
+ name: Regression (RMSE)
88
+ dataset:
89
+ name: CLEARANCE
90
+ type: CLEARANCE
91
+ metrics:
92
+ - type: rmse
93
+ value: 44.0137
94
+ - task:
95
+ type: regression
96
+ name: Regression (RMSE)
97
+ dataset:
98
+ name: ESOL
99
+ type: ESOL
100
+ metrics:
101
+ - type: rmse
102
+ value: 0.8158
103
+ - task:
104
+ type: regression
105
+ name: Regression (RMSE)
106
+ dataset:
107
+ name: FREESOLV
108
+ type: FREESOLV
109
+ metrics:
110
+ - type: rmse
111
+ value: 0.4979
112
+ - task:
113
+ type: regression
114
+ name: Regression (RMSE)
115
+ dataset:
116
+ name: LIPO
117
+ type: LIPO
118
+ metrics:
119
+ - type: rmse
120
+ value: 0.6505
121
+ ---
122
+
123
+ # ModChemBERT: ModernBERT as a Chemical Language Model
124
+ ModChemBERT is a ModernBERT-based chemical language model (CLM), trained on SMILES strings for masked language modeling (MLM) and downstream molecular property prediction (classification & regression).
125
+
126
+ ## Usage
127
+ ### Load Model
128
+ ```python
129
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
130
+
131
+ model_id = "Derify/ModChemBERT"
132
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
133
+ model = AutoModelForMaskedLM.from_pretrained(
134
+ model_id,
135
+ trust_remote_code=True,
136
+ dtype="float16",
137
+ device_map="auto",
138
+ )
139
+ ```
140
+
141
+ ### Fill-Mask Pipeline
142
+ ```python
143
+ from transformers import pipeline
144
+
145
+ fill = pipeline("fill-mask", model=model, tokenizer=tokenizer)
146
+ print(fill("c1ccccc1[MASK]"))
147
+ ```
148
+
149
+ ## Intended Use
150
+ * Primary: Research and development for molecular property prediction, experimentation with pooling strategies, and as a foundational model for downstream applications.
151
+ * Appropriate for: Binary / multi-class classification (e.g., toxicity, activity) and single-task or multi-task regression (e.g., solubility, clearance) after fine-tuning.
152
+ * Not intended for generating novel molecules.
153
+
154
+ ## Limitations
155
+ - Out-of-domain performance may degrade for: very long (>128 token) SMILES, inorganic / organometallic compounds, polymers, or charged / enumerated tautomers are not well represented in training.
156
+ - No guarantee of synthesizability, safety, or biological efficacy.
157
+
158
+ ## Ethical Considerations & Responsible Use
159
+ - Potential biases arise from training corpora skewed to drug-like space.
160
+ - Do not deploy in clinical or regulatory settings without rigorous, domain-specific validation.
161
+
162
+ ## Architecture
163
+ - Backbone: ModernBERT
164
+ - Hidden size: 768
165
+ - Intermediate size: 1152
166
+ - Encoder Layers: 22
167
+ - Attention heads: 12
168
+ - Max sequence length: 256 tokens (MLM primarily trained with 128-token sequences)
169
+ - Vocabulary: BPE tokenizer using [MolFormer's vocab](https://github.com/emapco/ModChemBERT/blob/main/modchembert/tokenizers/molformer/vocab.json) (2362 tokens)
170
+
171
+ ## Pooling (Classifier / Regressor Head)
172
+ Kallergis et al. [1] demonstrated that the CLM embedding method prior to the prediction head can significantly impact downstream performance.
173
+
174
+ Behrendt et al. [2] noted that the last few layers contain task-specific information and that pooling methods leveraging information from multiple layers can enhance model performance. Their results further demonstrated that the `max_seq_mha` pooling method was particularly effective in low-data regimes, which is often the case for molecular property prediction tasks.
175
+
176
+ Multiple pooling strategies are supported by ModChemBERT to explore their impact on downstream performance:
177
+ - `cls`: Last layer [CLS]
178
+ - `mean`: Mean over last hidden layer
179
+ - `max_cls`: Max over last k layers of [CLS]
180
+ - `cls_mha`: MHA with [CLS] as query
181
+ - `max_seq_mha`: MHA with max pooled sequence as KV and max pooled [CLS] as query
182
+ - `sum_mean`: Sum over all layers then mean tokens
183
+ - `sum_sum`: Sum over all layers then sum tokens
184
+ - `mean_mean`: Mean over all layers then mean tokens
185
+ - `mean_sum`: Mean over all layers then sum tokens
186
+ - `max_seq_mean`: Max over last k layers then mean tokens
187
+
188
+ ## Training Pipeline
189
+ <div align="center">
190
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/656892962693fa22e18b5331/bxNbpgMkU8m60ypyEJoWQ.png" alt="ModChemBERT Training Pipeline" width="650"/>
191
+ </div>
192
+
193
+ ### Rationale for MTR Stage
194
+ Following Sultan et al. [3], multi-task regression (physicochemical properties) biases the latent space toward ADME-related representations prior to narrow TAFT specialization. Sultan et al. observed that MLM + DAPT (MTR) outperforms MLM-only, MTR-only, and MTR + DAPT (MTR).
195
+
196
+ ### Checkpoint Averaging Motivation
197
+ Inspired by ModernBERT [4], JaColBERTv2.5 [5], and Llama 3.1 [6], where results show that model merging can enhance generalization or performance while mitigating overfitting to any single fine-tune or annealing checkpoint.
198
+
199
+ ## Datasets
200
+ - Pretraining: [Derify/augmented_canonical_druglike_QED_Pfizer_15M](https://huggingface.co/datasets/Derify/augmented_canonical_druglike_QED_Pfizer_15M)
201
+ - Domain Adaptive Pretraining (DAPT) & Task Adaptive Fine-tuning (TAFT): ADME + AstraZeneca datasets (10 tasks) with scaffold splits from DA4MT pipeline (see [domain-adaptation-molecular-transformers](https://github.com/emapco/ModChemBERT/tree/main/domain-adaptation-molecular-transformers))
202
+ - Benchmarking: ChemBERTa-3 [7] tasks (BACE, BBBP, TOX21, HIV, SIDER, CLINTOX for classification; ESOL, FREESOLV, LIPO, BACE, CLEARANCE for regression)
203
+
204
+ ## Benchmarking
205
+ Benchmarks were conducted with the ChemBERTa-3 framework using DeepChem scaffold splits. Each task was trained for 100 epochs with 3 random seeds.
206
+
207
+ ### Evaluation Methodology
208
+ - Classification Metric: ROC AUC.
209
+ - Regression Metric: RMSE.
210
+ - Aggregation: Mean ± standard deviation of the triplicate results.
211
+ - Input Constraints: SMILES truncated / filtered to ≤200 tokens, following the MolFormer paper's recommendation.
212
+
213
+ ### Results
214
+ <details><summary>Click to expand</summary>
215
+
216
+ #### Classification Datasets (ROC AUC - Higher is better)
217
+
218
+ | Model | BACE↑ | BBBP↑ | CLINTOX↑ | HIV↑ | SIDER↑ | TOX21↑ | AVG† |
219
+ | ---------------------------------------------------------------------------- | ----------------- | ----------------- | --------------------- | --------------------- | --------------------- | ----------------- | ------ |
220
+ | **Tasks** | 1 | 1 | 2 | 1 | 27 | 12 | |
221
+ | [ChemBERTa-100M-MLM](https://huggingface.co/DeepChem/ChemBERTa-100M-MLM)* | 0.781 ± 0.019 | 0.700 ± 0.027 | 0.979 ± 0.022 | 0.740 ± 0.013 | 0.611 ± 0.002 | 0.718 ± 0.011 | 0.7548 |
222
+ | [c3-MoLFormer-1.1B](https://huggingface.co/DeepChem/MoLFormer-c3-1.1B)* | 0.819 ± 0.019 | 0.735 ± 0.019 | 0.839 ± 0.013 | 0.762 ± 0.005 | 0.618 ± 0.005 | 0.723 ± 0.012 | 0.7493 |
223
+ | MoLFormer-LHPC* | **0.887 ± 0.004** | **0.908 ± 0.013** | 0.993 ± 0.004 | 0.750 ± 0.003 | 0.622 ± 0.007 | **0.791 ± 0.014** | 0.8252 |
224
+ | ------------------------- | ----------------- | ----------------- | ------------------- | ------------------- | ------------------- | ----------------- | ------ |
225
+ | [MLM](https://huggingface.co/Derify/ModChemBERT-MLM) | 0.8065 ± 0.0103 | 0.7222 ± 0.0150 | 0.9709 ± 0.0227 | ***0.7800 ± 0.0133*** | 0.6419 ± 0.0113 | 0.7400 ± 0.0044 | 0.7769 |
226
+ | [MLM + DAPT](https://huggingface.co/Derify/ModChemBERT-MLM-DAPT) | 0.8224 ± 0.0156 | 0.7402 ± 0.0095 | 0.9820 ± 0.0138 | 0.7702 ± 0.0020 | 0.6303 ± 0.0039 | 0.7360 ± 0.0036 | 0.7802 |
227
+ | [MLM + TAFT](https://huggingface.co/Derify/ModChemBERT-MLM-TAFT) | 0.7924 ± 0.0155 | 0.7282 ± 0.0058 | 0.9725 ± 0.0213 | 0.7770 ± 0.0047 | 0.6542 ± 0.0128 | *0.7646 ± 0.0039* | 0.7815 |
228
+ | [MLM + DAPT + TAFT](https://huggingface.co/Derify/ModChemBERT-MLM-DAPT-TAFT) | 0.8213 ± 0.0051 | 0.7356 ± 0.0094 | 0.9664 ± 0.0202 | 0.7750 ± 0.0048 | 0.6415 ± 0.0094 | 0.7263 ± 0.0036 | 0.7777 |
229
+ | [MLM + DAPT + TAFT OPT](https://huggingface.co/Derify/ModChemBERT) | *0.8346 ± 0.0045* | *0.7573 ± 0.0120* | ***0.9938 ± 0.0017*** | 0.7737 ± 0.0034 | ***0.6600 ± 0.0061*** | 0.7518 ± 0.0047 | 0.7952 |
230
+
231
+ #### Regression Datasets (RMSE - Lower is better)
232
+
233
+ | Model | BACE↓ | CLEARANCE↓ | ESOL↓ | FREESOLV↓ | LIPO↓ | AVG‡ |
234
+ | ---------------------------------------------------------------------------- | --------------------- | ---------------------- | --------------------- | --------------------- | --------------------- | ---------------- |
235
+ | **Tasks** | 1 | 1 | 1 | 1 | 1 | |
236
+ | [ChemBERTa-100M-MLM](https://huggingface.co/DeepChem/ChemBERTa-100M-MLM)* | 1.011 ± 0.038 | 51.582 ± 3.079 | 0.920 ± 0.011 | 0.536 ± 0.016 | 0.758 ± 0.013 | 0.8063 / 10.9614 |
237
+ | [c3-MoLFormer-1.1B](https://huggingface.co/DeepChem/MoLFormer-c3-1.1B)* | 1.094 ± 0.126 | 52.058 ± 2.767 | 0.829 ± 0.019 | 0.572 ± 0.023 | 0.728 ± 0.016 | 0.8058 / 11.0562 |
238
+ | MoLFormer-LHPC* | 1.201 ± 0.100 | 45.74 ± 2.637 | 0.848 ± 0.031 | 0.683 ± 0.040 | 0.895 ± 0.080 | 0.9068 / 9.8734 |
239
+ | ------------------------- | ------------------- | -------------------- | ------------------- | ------------------- | ------------------- | ---------------- |
240
+ | [MLM](https://huggingface.co/Derify/ModChemBERT-MLM) | 1.0893 ± 0.1319 | 49.0005 ± 1.2787 | 0.8456 ± 0.0406 | 0.5491 ± 0.0134 | 0.7147 ± 0.0062 | 0.7997 / 10.4398 |
241
+ | [MLM + DAPT](https://huggingface.co/Derify/ModChemBERT-MLM-DAPT) | 0.9931 ± 0.0258 | 45.4951 ± 0.7112 | 0.9319 ± 0.0153 | 0.6049 ± 0.0666 | 0.6874 ± 0.0040 | 0.8043 / 9.7425 |
242
+ | [MLM + TAFT](https://huggingface.co/Derify/ModChemBERT-MLM-TAFT) | 1.0304 ± 0.1146 | 47.8418 ± 0.4070 | ***0.7669 ± 0.0024*** | 0.5293 ± 0.0267 | 0.6708 ± 0.0074 | 0.7493 / 10.1678 |
243
+ | [MLM + DAPT + TAFT](https://huggingface.co/Derify/ModChemBERT-MLM-DAPT-TAFT) | 0.9713 ± 0.0224 | ***42.8010 ± 3.3475*** | 0.8169 ± 0.0268 | 0.5445 ± 0.0257 | 0.6820 ± 0.0028 | 0.7537 / 9.1631 |
244
+ | [MLM + DAPT + TAFT OPT](https://huggingface.co/Derify/ModChemBERT) | ***0.9665 ± 0.0250*** | 44.0137 ± 1.1110 | 0.8158 ± 0.0115 | ***0.4979 ± 0.0158*** | ***0.6505 ± 0.0126*** | 0.7327 / 9.3889 |
245
+
246
+ **Bold** indicates the best result in the column; *italic* indicates the best result among ModChemBERT checkpoints.<br/>
247
+ \* Published results from the ChemBERTa-3 [7] paper for optimized chemical language models using DeepChem scaffold splits.<br/>
248
+ † AVG column shows the mean score across all classification tasks.<br/>
249
+ ‡ AVG column shows the mean scores across all regression tasks without and with the clearance score.
250
+
251
+ </details>
252
+
253
+ ## Optimized ModChemBERT Hyperparameters
254
+
255
+ <details><summary>Click to expand</summary>
256
+
257
+ ### TAFT Datasets
258
+ Optimal parameters (per dataset) for the `MLM + DAPT + TAFT OPT` merged model:
259
+
260
+ | Dataset | Learning Rate | Batch Size | Warmup Ratio | Classifier Pooling | Last k Layers |
261
+ | ---------------------- | ------------- | ---------- | ------------ | ------------------ | ------------- |
262
+ | adme_microsom_stab_h | 3e-5 | 8 | 0.0 | max_seq_mean | 5 |
263
+ | adme_microsom_stab_r | 3e-5 | 16 | 0.2 | max_cls | 3 |
264
+ | adme_permeability | 3e-5 | 8 | 0.0 | max_cls | 3 |
265
+ | adme_ppb_h | 1e-5 | 32 | 0.1 | max_seq_mean | 5 |
266
+ | adme_ppb_r | 1e-5 | 32 | 0.0 | sum_mean | N/A |
267
+ | adme_solubility | 3e-5 | 32 | 0.0 | sum_mean | N/A |
268
+ | astrazeneca_CL | 3e-5 | 8 | 0.1 | max_seq_mha | 3 |
269
+ | astrazeneca_LogD74 | 1e-5 | 8 | 0.0 | max_seq_mean | 5 |
270
+ | astrazeneca_PPB | 1e-5 | 32 | 0.0 | max_cls | 3 |
271
+ | astrazeneca_Solubility | 1e-5 | 32 | 0.0 | max_seq_mean | 5 |
272
+
273
+ ### Benchmarking Datasets
274
+ Optimal parameters (per dataset) for the `MLM + DAPT + TAFT OPT` merged model:
275
+
276
+ | Dataset | Batch Size | Classifier Pooling | Last k Layers | Pooling Attention Dropout | Classifier Dropout | Embedding Dropout |
277
+ | ------------------- | ---------- | ------------------ | ------------- | ------------------------- | ------------------ | ----------------- |
278
+ | bace_classification | 32 | max_seq_mha | 3 | 0.0 | 0.0 | 0.0 |
279
+ | bbbp | 64 | max_cls | 3 | 0.1 | 0.0 | 0.0 |
280
+ | clintox | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
281
+ | hiv | 32 | max_seq_mha | 3 | 0.0 | 0.0 | 0.0 |
282
+ | sider | 32 | mean | N/A | 0.1 | 0.0 | 0.1 |
283
+ | tox21 | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
284
+ | base_regression | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
285
+ | clearance | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
286
+ | esol | 64 | sum_mean | N/A | 0.1 | 0.0 | 0.1 |
287
+ | freesolv | 32 | max_seq_mha | 5 | 0.1 | 0.0 | 0.0 |
288
+ | lipo | 32 | max_seq_mha | 3 | 0.1 | 0.1 | 0.1 |
289
+
290
+ </details>
291
+
292
+ ## Hardware
293
+ Training and experiments were performed on 2 NVIDIA RTX 3090 GPUs.
294
+
295
+ ## Citation
296
+ If you use ModChemBERT in your research, please cite the checkpoint and the following:
297
+ ```
298
+ @software{cortes-2025-modchembert,
299
+ author = {Emmanuel Cortes},
300
+ title = {ModChemBERT: ModernBERT as a Chemical Language Model},
301
+ year = {2025},
302
+ publisher = {GitHub},
303
+ howpublished = {GitHub repository},
304
+ url = {https://github.com/emapco/ModChemBERT}
305
+ }
306
+ ```
307
+
308
+ ## References
309
+ 1. Kallergis, Georgios, et al. "Domain adaptable language modeling of chemical compounds identifies potent pathoblockers for Pseudomonas aeruginosa." Communications Chemistry 8.1 (2025): 114.
310
+ 2. Behrendt, Maike, Stefan Sylvius Wagner, and Stefan Harmeling. "MaxPoolBERT: Enhancing BERT Classification via Layer-and Token-Wise Aggregation." arXiv preprint arXiv:2505.15696 (2025).
311
+ 3. Sultan, Afnan, et al. "Transformers for molecular property prediction: Domain adaptation efficiently improves performance." arXiv preprint arXiv:2503.03360 (2025).
312
+ 4. Warner, Benjamin, et al. "Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference." arXiv preprint arXiv:2412.13663 (2024).
313
+ 5. Clavié, Benjamin. "JaColBERTv2.5: Optimising Multi-Vector Retrievers to Create State-of-the-Art Japanese Retrievers with Constrained Resources." Journal of Natural Language Processing 32.1 (2025): 176-218.
314
+ 6. Grattafiori, Aaron, et al. "The llama 3 herd of models." arXiv preprint arXiv:2407.21783 (2024).
315
+ 7. Singh, Riya, et al. "ChemBERTa-3: An Open Source Training Framework for Chemical Foundation Models." (2025).
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModChemBertForMaskedLM",
4
+ "ModChemBertForSequenceClassification"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_modchembert.ModChemBertConfig",
10
+ "AutoModelForMaskedLM": "modeling_modchembert.ModChemBertForMaskedLM",
11
+ "AutoModelForSequenceClassification": "modeling_modchembert.ModChemBertForSequenceClassification"
12
+ },
13
+ "bos_token_id": 0,
14
+ "classifier_activation": "gelu",
15
+ "classifier_bias": false,
16
+ "classifier_dropout": 0.0,
17
+ "classifier_pooling": "max_seq_mha",
18
+ "classifier_pooling_attention_dropout": 0.1,
19
+ "classifier_pooling_last_k": 3,
20
+ "classifier_pooling_num_attention_heads": 4,
21
+ "cls_token_id": 0,
22
+ "decoder_bias": true,
23
+ "deterministic_flash_attn": false,
24
+ "dtype": "float32",
25
+ "embedding_dropout": 0.1,
26
+ "eos_token_id": 1,
27
+ "global_attn_every_n_layers": 3,
28
+ "global_rope_theta": 160000.0,
29
+ "hidden_activation": "gelu",
30
+ "hidden_size": 768,
31
+ "initializer_cutoff_factor": 2.0,
32
+ "initializer_range": 0.02,
33
+ "intermediate_size": 1152,
34
+ "layer_norm_eps": 1e-05,
35
+ "local_attention": 8,
36
+ "local_rope_theta": 10000.0,
37
+ "max_position_embeddings": 256,
38
+ "mlp_bias": false,
39
+ "mlp_dropout": 0.1,
40
+ "model_type": "modchembert",
41
+ "norm_bias": false,
42
+ "norm_eps": 1e-05,
43
+ "num_attention_heads": 12,
44
+ "num_hidden_layers": 22,
45
+ "num_labels": 1,
46
+ "pad_token_id": 2,
47
+ "position_embedding_type": "absolute",
48
+ "repad_logits_with_grad": false,
49
+ "sep_token_id": 1,
50
+ "sparse_pred_ignore_index": -100,
51
+ "sparse_prediction": false,
52
+ "transformers_version": "4.56.1",
53
+ "vocab_size": 2362
54
+ }
configuration_modchembert.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Emmanuel Cortes, All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Literal
16
+
17
+ from transformers.models.modernbert.configuration_modernbert import ModernBertConfig
18
+
19
+
20
+ class ModChemBertConfig(ModernBertConfig):
21
+ """
22
+ Configuration class for ModChemBert models.
23
+
24
+ This configuration class extends ModernBertConfig with additional parameters specific to
25
+ chemical molecule modeling and custom pooling strategies for classification/regression tasks.
26
+ It accepts all arguments and keyword arguments from ModernBertConfig.
27
+
28
+ Args:
29
+ classifier_pooling (str, optional): Pooling strategy for sequence classification.
30
+ Available options:
31
+ - "cls": Use CLS token representation
32
+ - "mean": Attention-weighted average pooling
33
+ - "sum_mean": Sum all hidden states across layers, then mean pool over sequence (ChemLM approach)
34
+ - "sum_sum": Sum all hidden states across layers, then sum pool over sequence
35
+ - "mean_mean": Mean all hidden states across layers, then mean pool over sequence
36
+ - "mean_sum": Mean all hidden states across layers, then sum pool over sequence
37
+ - "max_cls": Element-wise max pooling over last k hidden states, then take CLS token
38
+ - "cls_mha": Multi-head attention with CLS token as query and full sequence as keys/values
39
+ - "max_seq_mha": Max pooling over last k states + multi-head attention with CLS as query
40
+ - "max_seq_mean": Max pooling over last k hidden states, then mean pooling over sequence
41
+ Defaults to "sum_mean".
42
+ classifier_pooling_num_attention_heads (int, optional): Number of attention heads for multi-head attention
43
+ pooling strategies (cls_mha, max_seq_mha). Defaults to 4.
44
+ classifier_pooling_attention_dropout (float, optional): Dropout probability for multi-head attention
45
+ pooling strategies (cls_mha, max_seq_mha). Defaults to 0.0.
46
+ classifier_pooling_last_k (int, optional): Number of last hidden layers to use for max pooling
47
+ strategies (max_cls, max_seq_mha, max_seq_mean). Defaults to 8.
48
+ *args: Variable length argument list passed to ModernBertConfig.
49
+ **kwargs: Arbitrary keyword arguments passed to ModernBertConfig.
50
+
51
+ Note:
52
+ This class inherits all configuration parameters from ModernBertConfig including
53
+ hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, etc.
54
+ """
55
+
56
+ model_type = "modchembert"
57
+
58
+ def __init__(
59
+ self,
60
+ *args,
61
+ classifier_pooling: Literal[
62
+ "cls",
63
+ "mean",
64
+ "sum_mean",
65
+ "sum_sum",
66
+ "mean_mean",
67
+ "mean_sum",
68
+ "max_cls",
69
+ "cls_mha",
70
+ "max_seq_mha",
71
+ "max_seq_mean",
72
+ ] = "max_seq_mha",
73
+ classifier_pooling_num_attention_heads: int = 4,
74
+ classifier_pooling_attention_dropout: float = 0.0,
75
+ classifier_pooling_last_k: int = 8,
76
+ **kwargs,
77
+ ):
78
+ # Pass classifier_pooling="cls" to circumvent ValueError in ModernBertConfig init
79
+ super().__init__(*args, classifier_pooling="cls", **kwargs)
80
+ # Override with custom value
81
+ self.classifier_pooling = classifier_pooling
82
+ self.classifier_pooling_num_attention_heads = classifier_pooling_num_attention_heads
83
+ self.classifier_pooling_attention_dropout = classifier_pooling_attention_dropout
84
+ self.classifier_pooling_last_k = classifier_pooling_last_k
logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_bace_classification_20250923_084801.log ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 08:48:01,476 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Running benchmark for dataset: bace_classification
2
+ 2025-09-23 08:48:01,476 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - dataset: bace_classification, tasks: ['Class'], epochs: 100, learning rate: 3e-05
3
+ 2025-09-23 08:48:01,481 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset bace_classification at 2025-09-23_08-48-01
4
+ 2025-09-23 08:48:08,238 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5132 | Val mean-roc_auc_score: 0.6498
5
+ 2025-09-23 08:48:08,238 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 38
6
+ 2025-09-23 08:48:08,767 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.6498
7
+ 2025-09-23 08:48:13,994 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3586 | Val mean-roc_auc_score: 0.6810
8
+ 2025-09-23 08:48:14,195 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 76
9
+ 2025-09-23 08:48:14,762 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.6810
10
+ 2025-09-23 08:48:19,666 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.3214 | Val mean-roc_auc_score: 0.6796
11
+ 2025-09-23 08:48:25,095 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2615 | Val mean-roc_auc_score: 0.6721
12
+ 2025-09-23 08:48:30,348 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.2237 | Val mean-roc_auc_score: 0.6854
13
+ 2025-09-23 08:48:30,493 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 190
14
+ 2025-09-23 08:48:31,044 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val mean-roc_auc_score: 0.6854
15
+ 2025-09-23 08:48:36,328 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.2121 | Val mean-roc_auc_score: 0.6962
16
+ 2025-09-23 08:48:36,731 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 228
17
+ 2025-09-23 08:48:37,268 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.6962
18
+ 2025-09-23 08:48:42,579 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.2237 | Val mean-roc_auc_score: 0.7266
19
+ 2025-09-23 08:48:42,765 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 266
20
+ 2025-09-23 08:48:43,301 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 7 with val mean-roc_auc_score: 0.7266
21
+ 2025-09-23 08:48:48,497 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1895 | Val mean-roc_auc_score: 0.6788
22
+ 2025-09-23 08:48:53,591 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1439 | Val mean-roc_auc_score: 0.6866
23
+ 2025-09-23 08:48:58,883 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1826 | Val mean-roc_auc_score: 0.6923
24
+ 2025-09-23 08:49:04,042 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.1667 | Val mean-roc_auc_score: 0.7149
25
+ 2025-09-23 08:49:09,499 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1077 | Val mean-roc_auc_score: 0.7062
26
+ 2025-09-23 08:49:14,845 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1040 | Val mean-roc_auc_score: 0.6946
27
+ 2025-09-23 08:49:20,132 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1172 | Val mean-roc_auc_score: 0.6950
28
+ 2025-09-23 08:49:25,354 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0975 | Val mean-roc_auc_score: 0.7006
29
+ 2025-09-23 08:49:30,603 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0693 | Val mean-roc_auc_score: 0.7036
30
+ 2025-09-23 08:49:35,899 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0843 | Val mean-roc_auc_score: 0.7092
31
+ 2025-09-23 08:49:41,084 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0843 | Val mean-roc_auc_score: 0.7111
32
+ 2025-09-23 08:49:46,227 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0724 | Val mean-roc_auc_score: 0.7177
33
+ 2025-09-23 08:49:51,330 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0650 | Val mean-roc_auc_score: 0.7022
34
+ 2025-09-23 08:49:56,431 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0483 | Val mean-roc_auc_score: 0.7221
35
+ 2025-09-23 08:50:01,857 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0462 | Val mean-roc_auc_score: 0.7229
36
+ 2025-09-23 08:50:07,042 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0495 | Val mean-roc_auc_score: 0.7184
37
+ 2025-09-23 08:50:12,283 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0291 | Val mean-roc_auc_score: 0.7105
38
+ 2025-09-23 08:50:17,476 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0199 | Val mean-roc_auc_score: 0.7193
39
+ 2025-09-23 08:50:22,664 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0306 | Val mean-roc_auc_score: 0.6909
40
+ 2025-09-23 08:50:29,118 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0781 | Val mean-roc_auc_score: 0.7328
41
+ 2025-09-23 08:50:29,263 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 1026
42
+ 2025-09-23 08:50:29,798 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 27 with val mean-roc_auc_score: 0.7328
43
+ 2025-09-23 08:50:34,992 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0469 | Val mean-roc_auc_score: 0.7183
44
+ 2025-09-23 08:50:40,323 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0327 | Val mean-roc_auc_score: 0.7315
45
+ 2025-09-23 08:50:45,614 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0347 | Val mean-roc_auc_score: 0.7134
46
+ 2025-09-23 08:50:51,208 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0495 | Val mean-roc_auc_score: 0.7180
47
+ 2025-09-23 08:50:56,626 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0243 | Val mean-roc_auc_score: 0.7357
48
+ 2025-09-23 08:50:56,771 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 1216
49
+ 2025-09-23 08:50:57,303 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 32 with val mean-roc_auc_score: 0.7357
50
+ 2025-09-23 08:51:02,461 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0191 | Val mean-roc_auc_score: 0.7362
51
+ 2025-09-23 08:51:02,644 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 1254
52
+ 2025-09-23 08:51:03,178 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 33 with val mean-roc_auc_score: 0.7362
53
+ 2025-09-23 08:51:08,656 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0162 | Val mean-roc_auc_score: 0.7192
54
+ 2025-09-23 08:51:13,922 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0161 | Val mean-roc_auc_score: 0.7235
55
+ 2025-09-23 08:51:19,215 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0123 | Val mean-roc_auc_score: 0.7115
56
+ 2025-09-23 08:51:24,679 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7122
57
+ 2025-09-23 08:51:29,945 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7114
58
+ 2025-09-23 08:51:35,266 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0090 | Val mean-roc_auc_score: 0.7194
59
+ 2025-09-23 08:51:40,471 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0135 | Val mean-roc_auc_score: 0.7308
60
+ 2025-09-23 08:51:45,572 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0071 | Val mean-roc_auc_score: 0.7267
61
+ 2025-09-23 08:51:50,993 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0099 | Val mean-roc_auc_score: 0.7276
62
+ 2025-09-23 08:51:56,098 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7323
63
+ 2025-09-23 08:52:01,231 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0207 | Val mean-roc_auc_score: 0.7157
64
+ 2025-09-23 08:52:06,313 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0299 | Val mean-roc_auc_score: 0.6971
65
+ 2025-09-23 08:52:11,543 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0271 | Val mean-roc_auc_score: 0.7232
66
+ 2025-09-23 08:52:17,023 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0216 | Val mean-roc_auc_score: 0.7154
67
+ 2025-09-23 08:52:22,247 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0080 | Val mean-roc_auc_score: 0.7187
68
+ 2025-09-23 08:52:27,420 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0101 | Val mean-roc_auc_score: 0.6777
69
+ 2025-09-23 08:52:32,302 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0621 | Val mean-roc_auc_score: 0.6875
70
+ 2025-09-23 08:52:37,512 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0650 | Val mean-roc_auc_score: 0.6815
71
+ 2025-09-23 08:52:42,968 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0241 | Val mean-roc_auc_score: 0.6905
72
+ 2025-09-23 08:52:49,514 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0209 | Val mean-roc_auc_score: 0.6899
73
+ 2025-09-23 08:52:54,781 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.6891
74
+ 2025-09-23 08:52:59,983 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.6912
75
+ 2025-09-23 08:53:05,288 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.6918
76
+ 2025-09-23 08:53:10,728 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.6936
77
+ 2025-09-23 08:53:15,644 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.6959
78
+ 2025-09-23 08:53:20,763 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.6963
79
+ 2025-09-23 08:53:25,996 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.6975
80
+ 2025-09-23 08:53:31,290 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.6966
81
+ 2025-09-23 08:53:36,792 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.6983
82
+ 2025-09-23 08:53:42,014 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7002
83
+ 2025-09-23 08:53:47,449 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.6990
84
+ 2025-09-23 08:53:52,815 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0053 | Val mean-roc_auc_score: 0.6971
85
+ 2025-09-23 08:53:58,097 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0114 | Val mean-roc_auc_score: 0.6994
86
+ 2025-09-23 08:54:03,564 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7008
87
+ 2025-09-23 08:54:08,786 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0098 | Val mean-roc_auc_score: 0.6998
88
+ 2025-09-23 08:54:14,034 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.6990
89
+ 2025-09-23 08:54:19,271 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.6986
90
+ 2025-09-23 08:54:24,487 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.6985
91
+ 2025-09-23 08:54:29,955 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.6994
92
+ 2025-09-23 08:54:35,112 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.6969
93
+ 2025-09-23 08:54:39,952 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.6974
94
+ 2025-09-23 08:54:45,057 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.6988
95
+ 2025-09-23 08:54:50,160 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.7007
96
+ 2025-09-23 08:54:55,544 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7007
97
+ 2025-09-23 08:55:00,705 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.6991
98
+ 2025-09-23 08:55:07,137 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0085 | Val mean-roc_auc_score: 0.7001
99
+ 2025-09-23 08:55:12,421 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7014
100
+ 2025-09-23 08:55:17,598 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.7020
101
+ 2025-09-23 08:55:23,012 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7001
102
+ 2025-09-23 08:55:28,165 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7003
103
+ 2025-09-23 08:55:33,218 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7002
104
+ 2025-09-23 08:55:38,433 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7045
105
+ 2025-09-23 08:55:43,652 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0113 | Val mean-roc_auc_score: 0.7128
106
+ 2025-09-23 08:55:49,223 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7144
107
+ 2025-09-23 08:55:54,480 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7162
108
+ 2025-09-23 08:55:59,939 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7154
109
+ 2025-09-23 08:56:05,043 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7143
110
+ 2025-09-23 08:56:10,111 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7150
111
+ 2025-09-23 08:56:15,490 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7126
112
+ 2025-09-23 08:56:20,624 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7111
113
+ 2025-09-23 08:56:25,715 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7109
114
+ 2025-09-23 08:56:31,037 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.7091
115
+ 2025-09-23 08:56:36,265 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7192
116
+ 2025-09-23 08:56:41,778 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7239
117
+ 2025-09-23 08:56:46,663 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.7237
118
+ 2025-09-23 08:56:51,885 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7228
119
+ 2025-09-23 08:56:57,157 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.7224
120
+ 2025-09-23 08:56:58,003 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.8337
121
+ 2025-09-23 08:56:58,332 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset bace_classification at 2025-09-23_08-56-58
122
+ 2025-09-23 08:57:02,723 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5493 | Val mean-roc_auc_score: 0.6854
123
+ 2025-09-23 08:57:02,723 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 38
124
+ 2025-09-23 08:57:03,256 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.6854
125
+ 2025-09-23 08:57:08,532 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.4030 | Val mean-roc_auc_score: 0.6708
126
+ 2025-09-23 08:57:14,188 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.3125 | Val mean-roc_auc_score: 0.6761
127
+ 2025-09-23 08:57:19,401 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2730 | Val mean-roc_auc_score: 0.6947
128
+ 2025-09-23 08:57:19,534 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 152
129
+ 2025-09-23 08:57:20,054 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.6947
130
+ 2025-09-23 08:57:25,214 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.2188 | Val mean-roc_auc_score: 0.6914
131
+ 2025-09-23 08:57:30,328 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.2210 | Val mean-roc_auc_score: 0.6858
132
+ 2025-09-23 08:57:35,586 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1949 | Val mean-roc_auc_score: 0.6911
133
+ 2025-09-23 08:57:40,764 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1543 | Val mean-roc_auc_score: 0.7249
134
+ 2025-09-23 08:57:40,940 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 304
135
+ 2025-09-23 08:57:41,498 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 8 with val mean-roc_auc_score: 0.7249
136
+ 2025-09-23 08:57:46,647 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1538 | Val mean-roc_auc_score: 0.7236
137
+ 2025-09-23 08:57:51,874 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1299 | Val mean-roc_auc_score: 0.6952
138
+ 2025-09-23 08:57:57,065 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.1823 | Val mean-roc_auc_score: 0.6939
139
+ 2025-09-23 08:58:02,901 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1340 | Val mean-roc_auc_score: 0.7218
140
+ 2025-09-23 08:58:08,141 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0900 | Val mean-roc_auc_score: 0.7090
141
+ 2025-09-23 08:58:13,255 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0952 | Val mean-roc_auc_score: 0.6962
142
+ 2025-09-23 08:58:18,386 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0942 | Val mean-roc_auc_score: 0.7173
143
+ 2025-09-23 08:58:23,454 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0889 | Val mean-roc_auc_score: 0.7132
144
+ 2025-09-23 08:58:28,843 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0678 | Val mean-roc_auc_score: 0.7266
145
+ 2025-09-23 08:58:28,993 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 646
146
+ 2025-09-23 08:58:29,526 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 17 with val mean-roc_auc_score: 0.7266
147
+ 2025-09-23 08:58:34,672 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0773 | Val mean-roc_auc_score: 0.6853
148
+ 2025-09-23 08:58:39,885 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.1023 | Val mean-roc_auc_score: 0.7079
149
+ 2025-09-23 08:58:45,054 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0421 | Val mean-roc_auc_score: 0.7158
150
+ 2025-09-23 08:58:50,299 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0254 | Val mean-roc_auc_score: 0.7060
151
+ 2025-09-23 08:58:55,694 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0295 | Val mean-roc_auc_score: 0.7118
152
+ 2025-09-23 08:59:00,875 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0219 | Val mean-roc_auc_score: 0.7141
153
+ 2025-09-23 08:59:06,148 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0553 | Val mean-roc_auc_score: 0.6900
154
+ 2025-09-23 08:59:11,357 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0500 | Val mean-roc_auc_score: 0.7044
155
+ 2025-09-23 08:59:16,602 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0368 | Val mean-roc_auc_score: 0.6921
156
+ 2025-09-23 08:59:23,326 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.1064 | Val mean-roc_auc_score: 0.6855
157
+ 2025-09-23 08:59:28,531 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0707 | Val mean-roc_auc_score: 0.6976
158
+ 2025-09-23 08:59:33,708 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0308 | Val mean-roc_auc_score: 0.7139
159
+ 2025-09-23 08:59:38,904 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0227 | Val mean-roc_auc_score: 0.7088
160
+ 2025-09-23 08:59:44,068 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0159 | Val mean-roc_auc_score: 0.7082
161
+ 2025-09-23 08:59:49,535 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0112 | Val mean-roc_auc_score: 0.7082
162
+ 2025-09-23 08:59:54,479 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0121 | Val mean-roc_auc_score: 0.7109
163
+ 2025-09-23 08:59:59,691 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0166 | Val mean-roc_auc_score: 0.7106
164
+ 2025-09-23 09:00:04,870 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0163 | Val mean-roc_auc_score: 0.6939
165
+ 2025-09-23 09:00:10,045 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0117 | Val mean-roc_auc_score: 0.7037
166
+ 2025-09-23 09:00:15,596 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0197 | Val mean-roc_auc_score: 0.7077
167
+ 2025-09-23 09:00:20,770 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0350 | Val mean-roc_auc_score: 0.6969
168
+ 2025-09-23 09:00:25,991 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0157 | Val mean-roc_auc_score: 0.7159
169
+ 2025-09-23 09:00:31,122 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0146 | Val mean-roc_auc_score: 0.7120
170
+ 2025-09-23 09:00:36,340 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0075 | Val mean-roc_auc_score: 0.7083
171
+ 2025-09-23 09:00:41,792 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.7053
172
+ 2025-09-23 09:00:47,008 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7019
173
+ 2025-09-23 09:00:52,275 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0096 | Val mean-roc_auc_score: 0.7138
174
+ 2025-09-23 09:00:57,385 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7134
175
+ 2025-09-23 09:01:02,480 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.7134
176
+ 2025-09-23 09:01:07,868 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7116
177
+ 2025-09-23 09:01:12,970 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7069
178
+ 2025-09-23 09:01:18,151 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7101
179
+ 2025-09-23 09:01:23,212 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0123 | Val mean-roc_auc_score: 0.7132
180
+ 2025-09-23 09:01:28,373 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0130 | Val mean-roc_auc_score: 0.6994
181
+ 2025-09-23 09:01:33,900 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7054
182
+ 2025-09-23 09:01:40,307 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.7084
183
+ 2025-09-23 09:01:45,480 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7075
184
+ 2025-09-23 09:01:50,679 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7098
185
+ 2025-09-23 09:01:55,753 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7118
186
+ 2025-09-23 09:02:01,240 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7163
187
+ 2025-09-23 09:02:06,418 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0134 | Val mean-roc_auc_score: 0.7160
188
+ 2025-09-23 09:02:11,657 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7162
189
+ 2025-09-23 09:02:16,944 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.7127
190
+ 2025-09-23 09:02:22,186 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.7178
191
+ 2025-09-23 09:02:27,669 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.7174
192
+ 2025-09-23 09:02:32,875 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7153
193
+ 2025-09-23 09:02:38,083 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7121
194
+ 2025-09-23 09:02:43,291 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0085 | Val mean-roc_auc_score: 0.7151
195
+ 2025-09-23 09:02:48,475 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7192
196
+ 2025-09-23 09:02:53,977 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0358 | Val mean-roc_auc_score: 0.7240
197
+ 2025-09-23 09:02:59,211 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0374 | Val mean-roc_auc_score: 0.6917
198
+ 2025-09-23 09:03:04,450 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0193 | Val mean-roc_auc_score: 0.7005
199
+ 2025-09-23 09:03:09,662 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7051
200
+ 2025-09-23 09:03:14,802 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7027
201
+ 2025-09-23 09:03:20,260 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0054 | Val mean-roc_auc_score: 0.7036
202
+ 2025-09-23 09:03:25,371 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7031
203
+ 2025-09-23 09:03:30,535 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.7004
204
+ 2025-09-23 09:03:35,716 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.6959
205
+ 2025-09-23 09:03:40,941 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0053 | Val mean-roc_auc_score: 0.6955
206
+ 2025-09-23 09:03:46,331 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0195 | Val mean-roc_auc_score: 0.7026
207
+ 2025-09-23 09:03:51,423 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0110 | Val mean-roc_auc_score: 0.7003
208
+ 2025-09-23 09:03:57,838 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.6956
209
+ 2025-09-23 09:04:03,039 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0471 | Val mean-roc_auc_score: 0.7381
210
+ 2025-09-23 09:04:03,184 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 3040
211
+ 2025-09-23 09:04:03,715 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 80 with val mean-roc_auc_score: 0.7381
212
+ 2025-09-23 09:04:08,893 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0399 | Val mean-roc_auc_score: 0.7353
213
+ 2025-09-23 09:04:14,783 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0110 | Val mean-roc_auc_score: 0.7278
214
+ 2025-09-23 09:04:20,307 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7249
215
+ 2025-09-23 09:04:25,535 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.7225
216
+ 2025-09-23 09:04:30,730 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7114
217
+ 2025-09-23 09:04:35,960 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7242
218
+ 2025-09-23 09:04:41,448 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.7217
219
+ 2025-09-23 09:04:46,686 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7204
220
+ 2025-09-23 09:04:51,827 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.7208
221
+ 2025-09-23 09:04:56,890 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7207
222
+ 2025-09-23 09:05:02,187 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.7201
223
+ 2025-09-23 09:05:07,783 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.7201
224
+ 2025-09-23 09:05:12,896 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7198
225
+ 2025-09-23 09:05:18,069 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.7210
226
+ 2025-09-23 09:05:23,188 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.7195
227
+ 2025-09-23 09:05:28,399 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.7192
228
+ 2025-09-23 09:05:33,865 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.7193
229
+ 2025-09-23 09:05:39,054 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7177
230
+ 2025-09-23 09:05:44,323 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7174
231
+ 2025-09-23 09:05:49,538 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.7150
232
+ 2025-09-23 09:05:50,327 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.8296
233
+ 2025-09-23 09:05:50,661 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset bace_classification at 2025-09-23_09-05-50
234
+ 2025-09-23 09:05:55,119 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5296 | Val mean-roc_auc_score: 0.6726
235
+ 2025-09-23 09:05:55,119 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 38
236
+ 2025-09-23 09:05:55,664 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.6726
237
+ 2025-09-23 09:06:00,934 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3734 | Val mean-roc_auc_score: 0.6776
238
+ 2025-09-23 09:06:01,116 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 76
239
+ 2025-09-23 09:06:01,671 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.6776
240
+ 2025-09-23 09:06:06,950 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.3549 | Val mean-roc_auc_score: 0.6899
241
+ 2025-09-23 09:06:07,141 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 114
242
+ 2025-09-23 09:06:07,677 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.6899
243
+ 2025-09-23 09:06:13,078 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2599 | Val mean-roc_auc_score: 0.7008
244
+ 2025-09-23 09:06:13,271 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 152
245
+ 2025-09-23 09:06:13,818 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.7008
246
+ 2025-09-23 09:06:19,038 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.2484 | Val mean-roc_auc_score: 0.7333
247
+ 2025-09-23 09:06:19,225 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 190
248
+ 2025-09-23 09:06:19,755 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val mean-roc_auc_score: 0.7333
249
+ 2025-09-23 09:06:25,112 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1964 | Val mean-roc_auc_score: 0.6939
250
+ 2025-09-23 09:06:30,789 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1793 | Val mean-roc_auc_score: 0.6967
251
+ 2025-09-23 09:06:36,132 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.2598 | Val mean-roc_auc_score: 0.6956
252
+ 2025-09-23 09:06:41,378 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1505 | Val mean-roc_auc_score: 0.7200
253
+ 2025-09-23 09:06:46,589 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1447 | Val mean-roc_auc_score: 0.6631
254
+ 2025-09-23 09:06:51,787 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.1337 | Val mean-roc_auc_score: 0.7072
255
+ 2025-09-23 09:06:57,318 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0999 | Val mean-roc_auc_score: 0.6934
256
+ 2025-09-23 09:07:02,499 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1414 | Val mean-roc_auc_score: 0.7247
257
+ 2025-09-23 09:07:07,616 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1250 | Val mean-roc_auc_score: 0.7249
258
+ 2025-09-23 09:07:12,806 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0736 | Val mean-roc_auc_score: 0.7428
259
+ 2025-09-23 09:07:12,952 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 570
260
+ 2025-09-23 09:07:13,485 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 15 with val mean-roc_auc_score: 0.7428
261
+ 2025-09-23 09:07:18,580 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0854 | Val mean-roc_auc_score: 0.7422
262
+ 2025-09-23 09:07:23,932 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0625 | Val mean-roc_auc_score: 0.7240
263
+ 2025-09-23 09:07:28,918 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0389 | Val mean-roc_auc_score: 0.7340
264
+ 2025-09-23 09:07:34,193 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0682 | Val mean-roc_auc_score: 0.7501
265
+ 2025-09-23 09:07:34,357 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 722
266
+ 2025-09-23 09:07:34,893 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 19 with val mean-roc_auc_score: 0.7501
267
+ 2025-09-23 09:07:40,162 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0925 | Val mean-roc_auc_score: 0.7494
268
+ 2025-09-23 09:07:45,412 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0446 | Val mean-roc_auc_score: 0.7382
269
+ 2025-09-23 09:07:50,920 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0286 | Val mean-roc_auc_score: 0.7371
270
+ 2025-09-23 09:07:56,157 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0252 | Val mean-roc_auc_score: 0.7389
271
+ 2025-09-23 09:08:01,318 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.1758 | Val mean-roc_auc_score: 0.7325
272
+ 2025-09-23 09:08:06,516 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0868 | Val mean-roc_auc_score: 0.7293
273
+ 2025-09-23 09:08:11,716 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0465 | Val mean-roc_auc_score: 0.7228
274
+ 2025-09-23 09:08:18,467 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0335 | Val mean-roc_auc_score: 0.7115
275
+ 2025-09-23 09:08:23,664 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0267 | Val mean-roc_auc_score: 0.7098
276
+ 2025-09-23 09:08:28,949 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0090 | Val mean-roc_auc_score: 0.7095
277
+ 2025-09-23 09:08:34,027 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0304 | Val mean-roc_auc_score: 0.7050
278
+ 2025-09-23 09:08:39,052 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0452 | Val mean-roc_auc_score: 0.7224
279
+ 2025-09-23 09:08:44,566 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0513 | Val mean-roc_auc_score: 0.7185
280
+ 2025-09-23 09:08:49,789 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0241 | Val mean-roc_auc_score: 0.7234
281
+ 2025-09-23 09:08:54,953 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0325 | Val mean-roc_auc_score: 0.7189
282
+ 2025-09-23 09:09:00,169 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0214 | Val mean-roc_auc_score: 0.7293
283
+ 2025-09-23 09:09:05,419 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7280
284
+ 2025-09-23 09:09:10,938 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0231 | Val mean-roc_auc_score: 0.7269
285
+ 2025-09-23 09:09:16,060 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0144 | Val mean-roc_auc_score: 0.7265
286
+ 2025-09-23 09:09:21,195 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0185 | Val mean-roc_auc_score: 0.7295
287
+ 2025-09-23 09:09:26,329 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0254 | Val mean-roc_auc_score: 0.7296
288
+ 2025-09-23 09:09:31,452 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0364 | Val mean-roc_auc_score: 0.7104
289
+ 2025-09-23 09:09:36,622 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0278 | Val mean-roc_auc_score: 0.7221
290
+ 2025-09-23 09:09:41,775 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0722 | Val mean-roc_auc_score: 0.7299
291
+ 2025-09-23 09:09:46,995 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0210 | Val mean-roc_auc_score: 0.7388
292
+ 2025-09-23 09:09:52,173 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0137 | Val mean-roc_auc_score: 0.7357
293
+ 2025-09-23 09:09:57,418 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0137 | Val mean-roc_auc_score: 0.7375
294
+ 2025-09-23 09:10:02,953 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7439
295
+ 2025-09-23 09:10:08,230 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0118 | Val mean-roc_auc_score: 0.7415
296
+ 2025-09-23 09:10:13,451 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0089 | Val mean-roc_auc_score: 0.7438
297
+ 2025-09-23 09:10:18,704 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7472
298
+ 2025-09-23 09:10:23,914 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7400
299
+ 2025-09-23 09:10:29,415 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.7426
300
+ 2025-09-23 09:10:35,778 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.7377
301
+ 2025-09-23 09:10:40,974 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7403
302
+ 2025-09-23 09:10:46,054 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.7410
303
+ 2025-09-23 09:10:50,937 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.7381
304
+ 2025-09-23 09:10:56,300 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.7405
305
+ 2025-09-23 09:11:01,439 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.7403
306
+ 2025-09-23 09:11:06,546 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.7439
307
+ 2025-09-23 09:11:11,673 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0691 | Val mean-roc_auc_score: 0.7421
308
+ 2025-09-23 09:11:16,794 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0490 | Val mean-roc_auc_score: 0.7427
309
+ 2025-09-23 09:11:22,322 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0197 | Val mean-roc_auc_score: 0.7442
310
+ 2025-09-23 09:11:27,582 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0352 | Val mean-roc_auc_score: 0.7243
311
+ 2025-09-23 09:11:32,872 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0238 | Val mean-roc_auc_score: 0.7516
312
+ 2025-09-23 09:11:33,027 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Global step of best model: 2432
313
+ 2025-09-23 09:11:33,563 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Best model saved at epoch 64 with val mean-roc_auc_score: 0.7516
314
+ 2025-09-23 09:11:38,765 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0103 | Val mean-roc_auc_score: 0.7485
315
+ 2025-09-23 09:11:43,746 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7469
316
+ 2025-09-23 09:11:49,269 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0089 | Val mean-roc_auc_score: 0.7425
317
+ 2025-09-23 09:11:54,468 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0081 | Val mean-roc_auc_score: 0.7407
318
+ 2025-09-23 09:11:59,744 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7432
319
+ 2025-09-23 09:12:04,939 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0075 | Val mean-roc_auc_score: 0.7437
320
+ 2025-09-23 09:12:10,129 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7444
321
+ 2025-09-23 09:12:15,667 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7423
322
+ 2025-09-23 09:12:20,900 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7422
323
+ 2025-09-23 09:12:26,168 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.7427
324
+ 2025-09-23 09:12:31,461 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7435
325
+ 2025-09-23 09:12:36,712 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7432
326
+ 2025-09-23 09:12:42,230 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.7426
327
+ 2025-09-23 09:12:47,466 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.7399
328
+ 2025-09-23 09:12:53,994 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7431
329
+ 2025-09-23 09:12:59,394 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0048 | Val mean-roc_auc_score: 0.7413
330
+ 2025-09-23 09:13:04,807 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.7422
331
+ 2025-09-23 09:13:10,190 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0072 | Val mean-roc_auc_score: 0.7430
332
+ 2025-09-23 09:13:15,221 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7431
333
+ 2025-09-23 09:13:20,321 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7429
334
+ 2025-09-23 09:13:25,422 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7422
335
+ 2025-09-23 09:13:30,614 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7432
336
+ 2025-09-23 09:13:36,082 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.7421
337
+ 2025-09-23 09:13:41,311 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.7421
338
+ 2025-09-23 09:13:46,578 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7414
339
+ 2025-09-23 09:13:51,584 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7394
340
+ 2025-09-23 09:13:56,817 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7381
341
+ 2025-09-23 09:14:02,317 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.7381
342
+ 2025-09-23 09:14:07,564 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.7378
343
+ 2025-09-23 09:14:12,760 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.7372
344
+ 2025-09-23 09:14:18,006 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7364
345
+ 2025-09-23 09:14:23,123 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7352
346
+ 2025-09-23 09:14:28,969 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.7365
347
+ 2025-09-23 09:14:34,255 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.7359
348
+ 2025-09-23 09:14:39,580 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7380
349
+ 2025-09-23 09:14:44,811 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.7389
350
+ 2025-09-23 09:14:45,598 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.8404
351
+ 2025-09-23 09:14:45,932 - logs_modchembert_bace_classification_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg mean-roc_auc_score: 0.8346, Std Dev: 0.0045
logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_bbbp_epochs100_batch_size64_20250923_021951.log ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 02:19:51,927 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Running benchmark for dataset: bbbp
2
+ 2025-09-23 02:19:51,927 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - dataset: bbbp, tasks: ['p_np'], epochs: 100, learning rate: 3e-05
3
+ 2025-09-23 02:19:51,931 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Starting triplicate run 1 for dataset bbbp at 2025-09-23_02-19-51
4
+ 2025-09-23 02:19:55,043 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 1/100 | Train Loss: 0.2764 | Val mean-roc_auc_score: 0.9905
5
+ 2025-09-23 02:19:55,044 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 26
6
+ 2025-09-23 02:19:55,547 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.9905
7
+ 2025-09-23 02:19:59,232 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 2/100 | Train Loss: 0.1575 | Val mean-roc_auc_score: 0.9937
8
+ 2025-09-23 02:19:59,404 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 52
9
+ 2025-09-23 02:19:59,920 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.9937
10
+ 2025-09-23 02:20:03,634 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 3/100 | Train Loss: 0.1244 | Val mean-roc_auc_score: 0.9940
11
+ 2025-09-23 02:20:03,799 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 78
12
+ 2025-09-23 02:20:04,307 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.9940
13
+ 2025-09-23 02:20:07,975 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 4/100 | Train Loss: 0.1201 | Val mean-roc_auc_score: 0.9941
14
+ 2025-09-23 02:20:08,158 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 104
15
+ 2025-09-23 02:20:08,676 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.9941
16
+ 2025-09-23 02:20:12,379 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 5/100 | Train Loss: 0.0733 | Val mean-roc_auc_score: 0.9942
17
+ 2025-09-23 02:20:12,553 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 130
18
+ 2025-09-23 02:20:13,060 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 5 with val mean-roc_auc_score: 0.9942
19
+ 2025-09-23 02:20:16,788 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 6/100 | Train Loss: 0.0619 | Val mean-roc_auc_score: 0.9941
20
+ 2025-09-23 02:20:20,905 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 7/100 | Train Loss: 0.0481 | Val mean-roc_auc_score: 0.9940
21
+ 2025-09-23 02:20:24,546 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 8/100 | Train Loss: 0.0449 | Val mean-roc_auc_score: 0.9947
22
+ 2025-09-23 02:20:24,688 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 208
23
+ 2025-09-23 02:20:25,193 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 8 with val mean-roc_auc_score: 0.9947
24
+ 2025-09-23 02:20:28,929 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 9/100 | Train Loss: 0.0281 | Val mean-roc_auc_score: 0.9951
25
+ 2025-09-23 02:20:29,101 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 234
26
+ 2025-09-23 02:20:29,616 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 9 with val mean-roc_auc_score: 0.9951
27
+ 2025-09-23 02:20:33,332 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 10/100 | Train Loss: 0.0192 | Val mean-roc_auc_score: 0.9946
28
+ 2025-09-23 02:20:37,136 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 11/100 | Train Loss: 0.0191 | Val mean-roc_auc_score: 0.9945
29
+ 2025-09-23 02:20:41,185 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 12/100 | Train Loss: 0.0172 | Val mean-roc_auc_score: 0.9937
30
+ 2025-09-23 02:20:44,841 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 13/100 | Train Loss: 0.0165 | Val mean-roc_auc_score: 0.9945
31
+ 2025-09-23 02:20:48,549 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 14/100 | Train Loss: 0.0136 | Val mean-roc_auc_score: 0.9938
32
+ 2025-09-23 02:20:52,243 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 15/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.9943
33
+ 2025-09-23 02:20:55,889 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 16/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.9945
34
+ 2025-09-23 02:20:59,945 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 17/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.9943
35
+ 2025-09-23 02:21:03,620 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 18/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.9943
36
+ 2025-09-23 02:21:07,401 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 19/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.9943
37
+ 2025-09-23 02:21:11,065 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 20/100 | Train Loss: 0.0095 | Val mean-roc_auc_score: 0.9942
38
+ 2025-09-23 02:21:14,736 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 21/100 | Train Loss: 0.0096 | Val mean-roc_auc_score: 0.9943
39
+ 2025-09-23 02:21:18,751 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 22/100 | Train Loss: 0.0087 | Val mean-roc_auc_score: 0.9946
40
+ 2025-09-23 02:21:22,437 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 23/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.9943
41
+ 2025-09-23 02:21:26,073 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 24/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.9945
42
+ 2025-09-23 02:21:29,694 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 25/100 | Train Loss: 0.0053 | Val mean-roc_auc_score: 0.9948
43
+ 2025-09-23 02:21:33,402 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 26/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.9948
44
+ 2025-09-23 02:21:37,392 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 27/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9948
45
+ 2025-09-23 02:21:41,073 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 28/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.9949
46
+ 2025-09-23 02:21:44,741 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 29/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.9949
47
+ 2025-09-23 02:21:48,448 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 30/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9950
48
+ 2025-09-23 02:21:52,140 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 31/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9951
49
+ 2025-09-23 02:21:56,178 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 32/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.9947
50
+ 2025-09-23 02:21:59,830 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 33/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.9951
51
+ 2025-09-23 02:22:03,548 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 34/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.9952
52
+ 2025-09-23 02:22:03,693 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 884
53
+ 2025-09-23 02:22:04,207 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 34 with val mean-roc_auc_score: 0.9952
54
+ 2025-09-23 02:22:07,874 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 35/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9955
55
+ 2025-09-23 02:22:08,046 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 910
56
+ 2025-09-23 02:22:08,559 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 35 with val mean-roc_auc_score: 0.9955
57
+ 2025-09-23 02:22:12,240 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 36/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.9954
58
+ 2025-09-23 02:22:16,287 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 37/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9954
59
+ 2025-09-23 02:22:19,943 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 38/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9954
60
+ 2025-09-23 02:22:24,799 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 39/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9954
61
+ 2025-09-23 02:22:28,540 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 40/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9952
62
+ 2025-09-23 02:22:32,235 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 41/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9953
63
+ 2025-09-23 02:22:36,296 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 42/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9953
64
+ 2025-09-23 02:22:40,000 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 43/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9952
65
+ 2025-09-23 02:22:43,738 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 44/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9954
66
+ 2025-09-23 02:22:47,471 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 45/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9953
67
+ 2025-09-23 02:22:51,161 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 46/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.9952
68
+ 2025-09-23 02:22:55,234 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 47/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.9948
69
+ 2025-09-23 02:22:58,921 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 48/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9939
70
+ 2025-09-23 02:23:02,599 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 49/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9941
71
+ 2025-09-23 02:23:06,260 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 50/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9942
72
+ 2025-09-23 02:23:09,955 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 51/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9942
73
+ 2025-09-23 02:23:14,048 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 52/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9943
74
+ 2025-09-23 02:23:17,731 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 53/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9943
75
+ 2025-09-23 02:23:21,454 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 54/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9943
76
+ 2025-09-23 02:23:25,132 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 55/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9942
77
+ 2025-09-23 02:23:28,802 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 56/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9944
78
+ 2025-09-23 02:23:32,874 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 57/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9944
79
+ 2025-09-23 02:23:36,614 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 58/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9942
80
+ 2025-09-23 02:23:40,309 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 59/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9942
81
+ 2025-09-23 02:23:43,993 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 60/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9942
82
+ 2025-09-23 02:23:47,691 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 61/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9942
83
+ 2025-09-23 02:23:51,717 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 62/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9945
84
+ 2025-09-23 02:23:55,434 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 63/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.9943
85
+ 2025-09-23 02:23:59,118 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 64/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9943
86
+ 2025-09-23 02:24:02,815 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 65/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.9945
87
+ 2025-09-23 02:24:06,534 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 66/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.9934
88
+ 2025-09-23 02:24:10,574 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 67/100 | Train Loss: 0.0343 | Val mean-roc_auc_score: 0.9956
89
+ 2025-09-23 02:24:10,712 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 1742
90
+ 2025-09-23 02:24:11,235 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 67 with val mean-roc_auc_score: 0.9956
91
+ 2025-09-23 02:24:14,948 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 68/100 | Train Loss: 0.0151 | Val mean-roc_auc_score: 0.9949
92
+ 2025-09-23 02:24:18,646 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 69/100 | Train Loss: 0.0099 | Val mean-roc_auc_score: 0.9949
93
+ 2025-09-23 02:24:22,378 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 70/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9951
94
+ 2025-09-23 02:24:26,058 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 71/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9952
95
+ 2025-09-23 02:24:30,143 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 72/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9952
96
+ 2025-09-23 02:24:33,930 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 73/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9951
97
+ 2025-09-23 02:24:37,678 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 74/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9952
98
+ 2025-09-23 02:24:41,351 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 75/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9953
99
+ 2025-09-23 02:24:45,141 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 76/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9952
100
+ 2025-09-23 02:24:50,458 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 77/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9953
101
+ 2025-09-23 02:24:54,140 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 78/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9955
102
+ 2025-09-23 02:24:57,817 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 79/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9951
103
+ 2025-09-23 02:25:01,530 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 80/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.9951
104
+ 2025-09-23 02:25:05,224 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 81/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9951
105
+ 2025-09-23 02:25:09,174 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 82/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9951
106
+ 2025-09-23 02:25:12,907 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 83/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9950
107
+ 2025-09-23 02:25:16,662 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 84/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9951
108
+ 2025-09-23 02:25:20,386 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 85/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9951
109
+ 2025-09-23 02:25:24,066 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 86/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9951
110
+ 2025-09-23 02:25:28,042 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 87/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9951
111
+ 2025-09-23 02:25:31,732 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 88/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9952
112
+ 2025-09-23 02:25:35,433 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 89/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9952
113
+ 2025-09-23 02:25:39,171 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 90/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9951
114
+ 2025-09-23 02:25:42,880 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 91/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9952
115
+ 2025-09-23 02:25:46,938 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 92/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9952
116
+ 2025-09-23 02:25:50,702 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 93/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9950
117
+ 2025-09-23 02:25:54,463 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 94/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9951
118
+ 2025-09-23 02:25:58,174 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 95/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9950
119
+ 2025-09-23 02:26:01,933 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 96/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9950
120
+ 2025-09-23 02:26:05,954 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 97/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9950
121
+ 2025-09-23 02:26:09,690 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 98/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9950
122
+ 2025-09-23 02:26:13,353 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 99/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9950
123
+ 2025-09-23 02:26:17,050 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 100/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9951
124
+ 2025-09-23 02:26:17,646 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Test mean-roc_auc_score: 0.7558
125
+ 2025-09-23 02:26:18,019 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Starting triplicate run 2 for dataset bbbp at 2025-09-23_02-26-18
126
+ 2025-09-23 02:26:21,184 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 1/100 | Train Loss: 0.2488 | Val mean-roc_auc_score: 0.9881
127
+ 2025-09-23 02:26:21,184 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 26
128
+ 2025-09-23 02:26:21,701 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.9881
129
+ 2025-09-23 02:26:25,401 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 2/100 | Train Loss: 0.1442 | Val mean-roc_auc_score: 0.9923
130
+ 2025-09-23 02:26:25,572 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 52
131
+ 2025-09-23 02:26:26,090 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.9923
132
+ 2025-09-23 02:26:29,800 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 3/100 | Train Loss: 0.1118 | Val mean-roc_auc_score: 0.9927
133
+ 2025-09-23 02:26:29,977 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 78
134
+ 2025-09-23 02:26:30,480 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.9927
135
+ 2025-09-23 02:26:34,159 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 4/100 | Train Loss: 0.1074 | Val mean-roc_auc_score: 0.9856
136
+ 2025-09-23 02:26:37,867 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 5/100 | Train Loss: 0.0694 | Val mean-roc_auc_score: 0.9874
137
+ 2025-09-23 02:26:41,558 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 6/100 | Train Loss: 0.0523 | Val mean-roc_auc_score: 0.9914
138
+ 2025-09-23 02:26:45,604 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 7/100 | Train Loss: 0.0362 | Val mean-roc_auc_score: 0.9886
139
+ 2025-09-23 02:26:49,337 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 8/100 | Train Loss: 0.0227 | Val mean-roc_auc_score: 0.9907
140
+ 2025-09-23 02:26:53,184 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 9/100 | Train Loss: 0.0227 | Val mean-roc_auc_score: 0.9899
141
+ 2025-09-23 02:26:56,895 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 10/100 | Train Loss: 0.0237 | Val mean-roc_auc_score: 0.9905
142
+ 2025-09-23 02:27:00,574 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 11/100 | Train Loss: 0.0212 | Val mean-roc_auc_score: 0.9923
143
+ 2025-09-23 02:27:04,648 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 12/100 | Train Loss: 0.0194 | Val mean-roc_auc_score: 0.9911
144
+ 2025-09-23 02:27:08,370 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 13/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.9917
145
+ 2025-09-23 02:27:12,042 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 14/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.9923
146
+ 2025-09-23 02:27:15,766 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 15/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.9919
147
+ 2025-09-23 02:27:19,508 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 16/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.9927
148
+ 2025-09-23 02:27:19,988 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 416
149
+ 2025-09-23 02:27:20,499 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 16 with val mean-roc_auc_score: 0.9927
150
+ 2025-09-23 02:27:24,237 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 17/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.9924
151
+ 2025-09-23 02:27:27,927 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 18/100 | Train Loss: 0.0089 | Val mean-roc_auc_score: 0.9937
152
+ 2025-09-23 02:27:28,103 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 468
153
+ 2025-09-23 02:27:28,636 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 18 with val mean-roc_auc_score: 0.9937
154
+ 2025-09-23 02:27:32,331 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 19/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.9932
155
+ 2025-09-23 02:27:36,055 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 20/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.9934
156
+ 2025-09-23 02:27:39,737 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 21/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.9936
157
+ 2025-09-23 02:27:43,792 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 22/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.9936
158
+ 2025-09-23 02:27:47,524 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 23/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.9935
159
+ 2025-09-23 02:27:51,237 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 24/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.9942
160
+ 2025-09-23 02:27:51,415 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 624
161
+ 2025-09-23 02:27:51,929 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 24 with val mean-roc_auc_score: 0.9942
162
+ 2025-09-23 02:27:55,594 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 25/100 | Train Loss: 0.0089 | Val mean-roc_auc_score: 0.9936
163
+ 2025-09-23 02:27:59,354 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 26/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.9932
164
+ 2025-09-23 02:28:03,456 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 27/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9936
165
+ 2025-09-23 02:28:07,133 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 28/100 | Train Loss: 0.0048 | Val mean-roc_auc_score: 0.9939
166
+ 2025-09-23 02:28:10,799 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 29/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.9939
167
+ 2025-09-23 02:28:14,485 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 30/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.9934
168
+ 2025-09-23 02:28:18,175 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 31/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.9935
169
+ 2025-09-23 02:28:22,207 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 32/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.9939
170
+ 2025-09-23 02:28:25,996 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 33/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9938
171
+ 2025-09-23 02:28:29,686 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 34/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9938
172
+ 2025-09-23 02:28:33,551 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 35/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.9937
173
+ 2025-09-23 02:28:37,228 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 36/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9938
174
+ 2025-09-23 02:28:41,257 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 37/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9939
175
+ 2025-09-23 02:28:44,956 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 38/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9939
176
+ 2025-09-23 02:28:49,890 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 39/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9940
177
+ 2025-09-23 02:28:53,572 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 40/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9945
178
+ 2025-09-23 02:28:53,709 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 1040
179
+ 2025-09-23 02:28:54,225 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 40 with val mean-roc_auc_score: 0.9945
180
+ 2025-09-23 02:28:57,921 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 41/100 | Train Loss: 0.0136 | Val mean-roc_auc_score: 0.9896
181
+ 2025-09-23 02:29:01,992 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 42/100 | Train Loss: 0.0113 | Val mean-roc_auc_score: 0.9892
182
+ 2025-09-23 02:29:05,674 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 43/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.9904
183
+ 2025-09-23 02:29:09,386 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 44/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.9919
184
+ 2025-09-23 02:29:13,056 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 45/100 | Train Loss: 0.0105 | Val mean-roc_auc_score: 0.9901
185
+ 2025-09-23 02:29:16,740 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 46/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.9913
186
+ 2025-09-23 02:29:20,867 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 47/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9913
187
+ 2025-09-23 02:29:24,549 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 48/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9923
188
+ 2025-09-23 02:29:28,262 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 49/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9924
189
+ 2025-09-23 02:29:31,967 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 50/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9923
190
+ 2025-09-23 02:29:35,651 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 51/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9924
191
+ 2025-09-23 02:29:39,702 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 52/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9923
192
+ 2025-09-23 02:29:43,421 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 53/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9923
193
+ 2025-09-23 02:29:47,118 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 54/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9923
194
+ 2025-09-23 02:29:50,864 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 55/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9925
195
+ 2025-09-23 02:29:54,562 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 56/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9923
196
+ 2025-09-23 02:29:58,635 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 57/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9922
197
+ 2025-09-23 02:30:02,332 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 58/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9926
198
+ 2025-09-23 02:30:06,022 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 59/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9925
199
+ 2025-09-23 02:30:09,712 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 60/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9923
200
+ 2025-09-23 02:30:13,367 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 61/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9920
201
+ 2025-09-23 02:30:17,476 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 62/100 | Train Loss: 0.0108 | Val mean-roc_auc_score: 0.9955
202
+ 2025-09-23 02:30:17,626 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 1612
203
+ 2025-09-23 02:30:18,147 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 62 with val mean-roc_auc_score: 0.9955
204
+ 2025-09-23 02:30:21,816 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 63/100 | Train Loss: 0.0523 | Val mean-roc_auc_score: 0.9921
205
+ 2025-09-23 02:30:25,566 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 64/100 | Train Loss: 0.0493 | Val mean-roc_auc_score: 0.9939
206
+ 2025-09-23 02:30:29,220 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 65/100 | Train Loss: 0.0149 | Val mean-roc_auc_score: 0.9909
207
+ 2025-09-23 02:30:32,910 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 66/100 | Train Loss: 0.0080 | Val mean-roc_auc_score: 0.9914
208
+ 2025-09-23 02:30:37,039 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 67/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.9915
209
+ 2025-09-23 02:30:40,767 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 68/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.9912
210
+ 2025-09-23 02:30:44,465 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 69/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.9915
211
+ 2025-09-23 02:30:48,153 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 70/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.9917
212
+ 2025-09-23 02:30:51,783 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 71/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.9914
213
+ 2025-09-23 02:30:55,899 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 72/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9916
214
+ 2025-09-23 02:30:59,701 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 73/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9916
215
+ 2025-09-23 02:31:03,436 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 74/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9917
216
+ 2025-09-23 02:31:07,098 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 75/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9920
217
+ 2025-09-23 02:31:10,758 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 76/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9919
218
+ 2025-09-23 02:31:15,984 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 77/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9920
219
+ 2025-09-23 02:31:19,768 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 78/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9920
220
+ 2025-09-23 02:31:23,523 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 79/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9918
221
+ 2025-09-23 02:31:27,239 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 80/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9920
222
+ 2025-09-23 02:31:30,951 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 81/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9920
223
+ 2025-09-23 02:31:34,980 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 82/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9923
224
+ 2025-09-23 02:31:38,620 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 83/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9922
225
+ 2025-09-23 02:31:42,444 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 84/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9925
226
+ 2025-09-23 02:31:46,138 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 85/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9925
227
+ 2025-09-23 02:31:49,789 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 86/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9925
228
+ 2025-09-23 02:31:53,873 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 87/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9925
229
+ 2025-09-23 02:31:57,625 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 88/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9926
230
+ 2025-09-23 02:32:01,308 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 89/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9932
231
+ 2025-09-23 02:32:04,983 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 90/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9921
232
+ 2025-09-23 02:32:08,702 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 91/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.9928
233
+ 2025-09-23 02:32:12,783 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 92/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.9912
234
+ 2025-09-23 02:32:16,479 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 93/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.9916
235
+ 2025-09-23 02:32:20,211 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 94/100 | Train Loss: 0.0053 | Val mean-roc_auc_score: 0.9913
236
+ 2025-09-23 02:32:23,928 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 95/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.9917
237
+ 2025-09-23 02:32:27,586 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 96/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9915
238
+ 2025-09-23 02:32:31,663 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 97/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.9917
239
+ 2025-09-23 02:32:35,395 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 98/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9919
240
+ 2025-09-23 02:32:39,133 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 99/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9920
241
+ 2025-09-23 02:32:42,892 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 100/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9919
242
+ 2025-09-23 02:32:43,493 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Test mean-roc_auc_score: 0.7727
243
+ 2025-09-23 02:32:43,893 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Starting triplicate run 3 for dataset bbbp at 2025-09-23_02-32-43
244
+ 2025-09-23 02:32:47,002 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 1/100 | Train Loss: 0.3149 | Val mean-roc_auc_score: 0.9929
245
+ 2025-09-23 02:32:47,002 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 26
246
+ 2025-09-23 02:32:47,504 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.9929
247
+ 2025-09-23 02:32:51,187 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 2/100 | Train Loss: 0.1755 | Val mean-roc_auc_score: 0.9955
248
+ 2025-09-23 02:32:51,354 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 52
249
+ 2025-09-23 02:32:51,867 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.9955
250
+ 2025-09-23 02:32:55,532 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 3/100 | Train Loss: 0.1352 | Val mean-roc_auc_score: 0.9959
251
+ 2025-09-23 02:32:55,706 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 78
252
+ 2025-09-23 02:32:56,221 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.9959
253
+ 2025-09-23 02:32:59,960 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 4/100 | Train Loss: 0.1094 | Val mean-roc_auc_score: 0.9959
254
+ 2025-09-23 02:33:00,136 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 104
255
+ 2025-09-23 02:33:00,639 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.9959
256
+ 2025-09-23 02:33:04,279 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 5/100 | Train Loss: 0.0883 | Val mean-roc_auc_score: 0.9955
257
+ 2025-09-23 02:33:07,999 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 6/100 | Train Loss: 0.0730 | Val mean-roc_auc_score: 0.9966
258
+ 2025-09-23 02:33:08,492 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Global step of best model: 156
259
+ 2025-09-23 02:33:08,999 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.9966
260
+ 2025-09-23 02:33:12,827 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 7/100 | Train Loss: 0.0496 | Val mean-roc_auc_score: 0.9953
261
+ 2025-09-23 02:33:16,495 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 8/100 | Train Loss: 0.0376 | Val mean-roc_auc_score: 0.9954
262
+ 2025-09-23 02:33:20,292 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 9/100 | Train Loss: 0.0297 | Val mean-roc_auc_score: 0.9958
263
+ 2025-09-23 02:33:24,012 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 10/100 | Train Loss: 0.0269 | Val mean-roc_auc_score: 0.9942
264
+ 2025-09-23 02:33:27,686 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 11/100 | Train Loss: 0.0201 | Val mean-roc_auc_score: 0.9949
265
+ 2025-09-23 02:33:31,739 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 12/100 | Train Loss: 0.0167 | Val mean-roc_auc_score: 0.9956
266
+ 2025-09-23 02:33:35,481 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 13/100 | Train Loss: 0.0136 | Val mean-roc_auc_score: 0.9956
267
+ 2025-09-23 02:33:39,150 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 14/100 | Train Loss: 0.0112 | Val mean-roc_auc_score: 0.9948
268
+ 2025-09-23 02:33:42,876 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 15/100 | Train Loss: 0.0108 | Val mean-roc_auc_score: 0.9950
269
+ 2025-09-23 02:33:46,579 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 16/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.9950
270
+ 2025-09-23 02:33:50,628 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 17/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.9949
271
+ 2025-09-23 02:33:54,373 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 18/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.9948
272
+ 2025-09-23 02:33:58,112 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 19/100 | Train Loss: 0.0081 | Val mean-roc_auc_score: 0.9945
273
+ 2025-09-23 02:34:01,798 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 20/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.9950
274
+ 2025-09-23 02:34:05,501 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 21/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.9946
275
+ 2025-09-23 02:34:09,600 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 22/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.9950
276
+ 2025-09-23 02:34:13,306 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 23/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.9941
277
+ 2025-09-23 02:34:17,074 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 24/100 | Train Loss: 0.0142 | Val mean-roc_auc_score: 0.9957
278
+ 2025-09-23 02:34:20,811 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 25/100 | Train Loss: 0.0222 | Val mean-roc_auc_score: 0.9886
279
+ 2025-09-23 02:34:24,515 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 26/100 | Train Loss: 0.0130 | Val mean-roc_auc_score: 0.9899
280
+ 2025-09-23 02:34:28,579 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 27/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.9917
281
+ 2025-09-23 02:34:32,226 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 28/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.9927
282
+ 2025-09-23 02:34:35,942 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 29/100 | Train Loss: 0.0048 | Val mean-roc_auc_score: 0.9926
283
+ 2025-09-23 02:34:39,587 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 30/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.9924
284
+ 2025-09-23 02:34:43,278 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 31/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9922
285
+ 2025-09-23 02:34:47,355 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 32/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.9922
286
+ 2025-09-23 02:34:51,108 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 33/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.9922
287
+ 2025-09-23 02:34:54,799 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 34/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.9923
288
+ 2025-09-23 02:34:58,464 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 35/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9922
289
+ 2025-09-23 02:35:02,066 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 36/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.9928
290
+ 2025-09-23 02:35:06,074 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 37/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9922
291
+ 2025-09-23 02:35:09,789 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 38/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9917
292
+ 2025-09-23 02:35:14,702 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 39/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9921
293
+ 2025-09-23 02:35:18,416 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 40/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9916
294
+ 2025-09-23 02:35:22,148 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 41/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9914
295
+ 2025-09-23 02:35:26,191 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 42/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9910
296
+ 2025-09-23 02:35:29,858 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 43/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.9909
297
+ 2025-09-23 02:35:33,554 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 44/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9915
298
+ 2025-09-23 02:35:37,252 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 45/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9917
299
+ 2025-09-23 02:35:40,917 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 46/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9911
300
+ 2025-09-23 02:35:44,934 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 47/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9907
301
+ 2025-09-23 02:35:48,596 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 48/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9909
302
+ 2025-09-23 02:35:52,285 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 49/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9909
303
+ 2025-09-23 02:35:55,971 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 50/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9909
304
+ 2025-09-23 02:35:59,749 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 51/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9908
305
+ 2025-09-23 02:36:03,805 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 52/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9924
306
+ 2025-09-23 02:36:07,522 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 53/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.9941
307
+ 2025-09-23 02:36:11,289 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 54/100 | Train Loss: 0.0287 | Val mean-roc_auc_score: 0.9911
308
+ 2025-09-23 02:36:15,025 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 55/100 | Train Loss: 0.0116 | Val mean-roc_auc_score: 0.9908
309
+ 2025-09-23 02:36:18,722 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 56/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.9909
310
+ 2025-09-23 02:36:22,757 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 57/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.9908
311
+ 2025-09-23 02:36:26,443 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 58/100 | Train Loss: 0.0075 | Val mean-roc_auc_score: 0.9908
312
+ 2025-09-23 02:36:30,140 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 59/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.9906
313
+ 2025-09-23 02:36:33,802 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 60/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9910
314
+ 2025-09-23 02:36:37,523 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 61/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9910
315
+ 2025-09-23 02:36:41,560 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 62/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9909
316
+ 2025-09-23 02:36:45,195 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 63/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9911
317
+ 2025-09-23 02:36:48,891 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 64/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9912
318
+ 2025-09-23 02:36:52,620 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 65/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9906
319
+ 2025-09-23 02:36:56,351 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 66/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9904
320
+ 2025-09-23 02:37:00,438 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 67/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9905
321
+ 2025-09-23 02:37:04,145 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 68/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9902
322
+ 2025-09-23 02:37:07,780 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 69/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9903
323
+ 2025-09-23 02:37:11,460 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 70/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.9904
324
+ 2025-09-23 02:37:15,161 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 71/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9903
325
+ 2025-09-23 02:37:19,171 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 72/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9904
326
+ 2025-09-23 02:37:22,841 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 73/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9905
327
+ 2025-09-23 02:37:26,516 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 74/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9904
328
+ 2025-09-23 02:37:30,250 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 75/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.9905
329
+ 2025-09-23 02:37:33,970 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 76/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9903
330
+ 2025-09-23 02:37:39,187 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 77/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9903
331
+ 2025-09-23 02:37:42,883 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 78/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9905
332
+ 2025-09-23 02:37:46,597 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 79/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.9905
333
+ 2025-09-23 02:37:50,283 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 80/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9905
334
+ 2025-09-23 02:37:54,021 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 81/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9901
335
+ 2025-09-23 02:37:58,096 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 82/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9905
336
+ 2025-09-23 02:38:01,797 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 83/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9903
337
+ 2025-09-23 02:38:05,485 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 84/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9905
338
+ 2025-09-23 02:38:09,163 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 85/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9905
339
+ 2025-09-23 02:38:12,832 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 86/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9902
340
+ 2025-09-23 02:38:16,928 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 87/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9902
341
+ 2025-09-23 02:38:20,595 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 88/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9902
342
+ 2025-09-23 02:38:24,267 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 89/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9899
343
+ 2025-09-23 02:38:27,963 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 90/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9905
344
+ 2025-09-23 02:38:31,640 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 91/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9904
345
+ 2025-09-23 02:38:35,695 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 92/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9905
346
+ 2025-09-23 02:38:39,392 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 93/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.9903
347
+ 2025-09-23 02:38:43,109 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 94/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.9903
348
+ 2025-09-23 02:38:46,783 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 95/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.9903
349
+ 2025-09-23 02:38:50,474 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 96/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9902
350
+ 2025-09-23 02:38:54,543 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 97/100 | Train Loss: 0.0007 | Val mean-roc_auc_score: 0.9903
351
+ 2025-09-23 02:38:58,246 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 98/100 | Train Loss: 0.0007 | Val mean-roc_auc_score: 0.9902
352
+ 2025-09-23 02:39:01,936 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 99/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9899
353
+ 2025-09-23 02:39:05,642 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Epoch 100/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9901
354
+ 2025-09-23 02:39:06,217 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Test mean-roc_auc_score: 0.7433
355
+ 2025-09-23 02:39:06,616 - logs_modchembert_bbbp_epochs100_batch_size64 - INFO - Final Triplicate Test Results — Avg mean-roc_auc_score: 0.7573, Std Dev: 0.0120
logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_clintox_epochs100_batch_size32_20250923_040853.log ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 04:08:53,606 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Running benchmark for dataset: clintox
2
+ 2025-09-23 04:08:53,606 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - dataset: clintox, tasks: ['FDA_APPROVED', 'CT_TOX'], epochs: 100, learning rate: 3e-05
3
+ 2025-09-23 04:08:53,610 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset clintox at 2025-09-23_04-08-53
4
+ 2025-09-23 04:08:57,113 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1208 | Val mean-roc_auc_score: 0.9272
5
+ 2025-09-23 04:08:57,113 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 37
6
+ 2025-09-23 04:08:57,637 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.9272
7
+ 2025-09-23 04:09:01,716 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.0355 | Val mean-roc_auc_score: 0.9818
8
+ 2025-09-23 04:09:01,884 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 74
9
+ 2025-09-23 04:09:02,396 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.9818
10
+ 2025-09-23 04:09:06,562 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.0162 | Val mean-roc_auc_score: 0.9434
11
+ 2025-09-23 04:09:10,619 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0329 | Val mean-roc_auc_score: 0.9794
12
+ 2025-09-23 04:09:14,647 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0209 | Val mean-roc_auc_score: 0.9696
13
+ 2025-09-23 04:09:18,760 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0170 | Val mean-roc_auc_score: 0.9868
14
+ 2025-09-23 04:09:19,284 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 222
15
+ 2025-09-23 04:09:19,801 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.9868
16
+ 2025-09-23 04:09:23,908 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0119 | Val mean-roc_auc_score: 0.9725
17
+ 2025-09-23 04:09:28,051 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0146 | Val mean-roc_auc_score: 0.9866
18
+ 2025-09-23 04:09:32,139 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0136 | Val mean-roc_auc_score: 0.9838
19
+ 2025-09-23 04:09:36,237 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0106 | Val mean-roc_auc_score: 0.9828
20
+ 2025-09-23 04:09:40,367 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.9840
21
+ 2025-09-23 04:09:44,862 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0102 | Val mean-roc_auc_score: 0.9799
22
+ 2025-09-23 04:09:49,045 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0134 | Val mean-roc_auc_score: 0.9860
23
+ 2025-09-23 04:09:53,123 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0110 | Val mean-roc_auc_score: 0.9852
24
+ 2025-09-23 04:09:57,246 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.9870
25
+ 2025-09-23 04:09:57,382 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 555
26
+ 2025-09-23 04:09:57,897 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 15 with val mean-roc_auc_score: 0.9870
27
+ 2025-09-23 04:10:01,993 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.9882
28
+ 2025-09-23 04:10:02,559 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 592
29
+ 2025-09-23 04:10:03,089 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 16 with val mean-roc_auc_score: 0.9882
30
+ 2025-09-23 04:10:07,281 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.9881
31
+ 2025-09-23 04:10:11,376 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.9876
32
+ 2025-09-23 04:10:15,463 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9851
33
+ 2025-09-23 04:10:19,519 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0048 | Val mean-roc_auc_score: 0.9874
34
+ 2025-09-23 04:10:23,624 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.9881
35
+ 2025-09-23 04:10:28,080 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9893
36
+ 2025-09-23 04:10:28,253 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 814
37
+ 2025-09-23 04:10:28,765 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 22 with val mean-roc_auc_score: 0.9893
38
+ 2025-09-23 04:10:32,829 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.9882
39
+ 2025-09-23 04:10:36,911 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.9870
40
+ 2025-09-23 04:10:41,029 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.9894
41
+ 2025-09-23 04:10:41,203 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 925
42
+ 2025-09-23 04:10:41,726 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 25 with val mean-roc_auc_score: 0.9894
43
+ 2025-09-23 04:10:45,755 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.9894
44
+ 2025-09-23 04:10:51,460 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.9894
45
+ 2025-09-23 04:10:55,561 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.9899
46
+ 2025-09-23 04:10:55,739 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 1036
47
+ 2025-09-23 04:10:56,260 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 28 with val mean-roc_auc_score: 0.9899
48
+ 2025-09-23 04:11:00,346 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.9894
49
+ 2025-09-23 04:11:04,472 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.9894
50
+ 2025-09-23 04:11:08,625 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9894
51
+ 2025-09-23 04:11:13,108 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9894
52
+ 2025-09-23 04:11:17,208 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.9894
53
+ 2025-09-23 04:11:21,292 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9876
54
+ 2025-09-23 04:11:25,387 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9876
55
+ 2025-09-23 04:11:29,512 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9876
56
+ 2025-09-23 04:11:34,054 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9876
57
+ 2025-09-23 04:11:38,150 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9876
58
+ 2025-09-23 04:11:42,216 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9876
59
+ 2025-09-23 04:11:46,325 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9876
60
+ 2025-09-23 04:11:50,410 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9876
61
+ 2025-09-23 04:11:54,915 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9865
62
+ 2025-09-23 04:11:59,006 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9873
63
+ 2025-09-23 04:12:03,100 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9859
64
+ 2025-09-23 04:12:07,181 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9881
65
+ 2025-09-23 04:12:11,330 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0003 | Val mean-roc_auc_score: 0.9881
66
+ 2025-09-23 04:12:15,851 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9876
67
+ 2025-09-23 04:12:19,996 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9876
68
+ 2025-09-23 04:12:24,040 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0005 | Val mean-roc_auc_score: 0.9873
69
+ 2025-09-23 04:12:28,198 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9871
70
+ 2025-09-23 04:12:32,274 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9865
71
+ 2025-09-23 04:12:36,767 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9859
72
+ 2025-09-23 04:12:40,866 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9853
73
+ 2025-09-23 04:12:44,973 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9850
74
+ 2025-09-23 04:12:50,262 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9859
75
+ 2025-09-23 04:12:54,340 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9821
76
+ 2025-09-23 04:12:58,800 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0003 | Val mean-roc_auc_score: 0.9798
77
+ 2025-09-23 04:13:02,879 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9813
78
+ 2025-09-23 04:13:06,952 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9848
79
+ 2025-09-23 04:13:11,079 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.9838
80
+ 2025-09-23 04:13:15,156 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9794
81
+ 2025-09-23 04:13:19,717 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9746
82
+ 2025-09-23 04:13:23,787 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9769
83
+ 2025-09-23 04:13:27,938 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9773
84
+ 2025-09-23 04:13:31,992 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9680
85
+ 2025-09-23 04:13:36,066 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9689
86
+ 2025-09-23 04:13:40,616 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9675
87
+ 2025-09-23 04:13:44,744 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0007 | Val mean-roc_auc_score: 0.9712
88
+ 2025-09-23 04:13:48,814 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9645
89
+ 2025-09-23 04:13:52,880 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9597
90
+ 2025-09-23 04:13:56,939 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9698
91
+ 2025-09-23 04:14:01,436 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9874
92
+ 2025-09-23 04:14:05,566 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0001 | Val mean-roc_auc_score: 0.9871
93
+ 2025-09-23 04:14:09,701 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9862
94
+ 2025-09-23 04:14:13,771 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9839
95
+ 2025-09-23 04:14:17,875 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.9780
96
+ 2025-09-23 04:14:22,304 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9718
97
+ 2025-09-23 04:14:26,389 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9677
98
+ 2025-09-23 04:14:30,723 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9645
99
+ 2025-09-23 04:14:34,777 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9659
100
+ 2025-09-23 04:14:38,858 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9642
101
+ 2025-09-23 04:14:44,504 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9639
102
+ 2025-09-23 04:14:48,534 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9505
103
+ 2025-09-23 04:14:52,641 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0009 | Val mean-roc_auc_score: 0.9481
104
+ 2025-09-23 04:14:56,763 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9454
105
+ 2025-09-23 04:15:00,957 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9375
106
+ 2025-09-23 04:15:05,473 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9101
107
+ 2025-09-23 04:15:09,578 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9072
108
+ 2025-09-23 04:15:13,669 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9236
109
+ 2025-09-23 04:15:17,744 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.8938
110
+ 2025-09-23 04:15:21,821 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9575
111
+ 2025-09-23 04:15:26,364 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0002 | Val mean-roc_auc_score: 0.9656
112
+ 2025-09-23 04:15:30,481 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9653
113
+ 2025-09-23 04:15:34,573 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9609
114
+ 2025-09-23 04:15:38,674 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9559
115
+ 2025-09-23 04:15:42,735 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9544
116
+ 2025-09-23 04:15:47,221 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9511
117
+ 2025-09-23 04:15:51,293 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9515
118
+ 2025-09-23 04:15:55,358 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9487
119
+ 2025-09-23 04:15:59,491 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9503
120
+ 2025-09-23 04:16:00,142 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.9955
121
+ 2025-09-23 04:16:00,603 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset clintox at 2025-09-23_04-16-00
122
+ 2025-09-23 04:16:04,085 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1858 | Val mean-roc_auc_score: 0.8855
123
+ 2025-09-23 04:16:04,085 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 37
124
+ 2025-09-23 04:16:04,600 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.8855
125
+ 2025-09-23 04:16:08,697 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.0458 | Val mean-roc_auc_score: 0.9797
126
+ 2025-09-23 04:16:08,867 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 74
127
+ 2025-09-23 04:16:09,392 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.9797
128
+ 2025-09-23 04:16:13,500 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.0180 | Val mean-roc_auc_score: 0.9862
129
+ 2025-09-23 04:16:13,671 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 111
130
+ 2025-09-23 04:16:14,183 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.9862
131
+ 2025-09-23 04:16:18,271 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0220 | Val mean-roc_auc_score: 0.9874
132
+ 2025-09-23 04:16:18,448 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 148
133
+ 2025-09-23 04:16:18,960 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.9874
134
+ 2025-09-23 04:16:23,013 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0225 | Val mean-roc_auc_score: 0.9834
135
+ 2025-09-23 04:16:27,063 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0165 | Val mean-roc_auc_score: 0.9873
136
+ 2025-09-23 04:16:31,521 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0171 | Val mean-roc_auc_score: 0.9850
137
+ 2025-09-23 04:16:35,599 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.9839
138
+ 2025-09-23 04:16:39,684 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0095 | Val mean-roc_auc_score: 0.9803
139
+ 2025-09-23 04:16:43,805 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0092 | Val mean-roc_auc_score: 0.9854
140
+ 2025-09-23 04:16:47,857 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.9857
141
+ 2025-09-23 04:16:52,313 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0087 | Val mean-roc_auc_score: 0.9897
142
+ 2025-09-23 04:16:52,491 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 444
143
+ 2025-09-23 04:16:53,025 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 12 with val mean-roc_auc_score: 0.9897
144
+ 2025-09-23 04:16:57,247 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0091 | Val mean-roc_auc_score: 0.9874
145
+ 2025-09-23 04:17:01,308 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0089 | Val mean-roc_auc_score: 0.9869
146
+ 2025-09-23 04:17:05,402 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.9886
147
+ 2025-09-23 04:17:09,485 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.9859
148
+ 2025-09-23 04:17:13,945 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0090 | Val mean-roc_auc_score: 0.9884
149
+ 2025-09-23 04:17:18,005 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.9881
150
+ 2025-09-23 04:17:22,074 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0103 | Val mean-roc_auc_score: 0.9876
151
+ 2025-09-23 04:17:26,159 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9876
152
+ 2025-09-23 04:17:30,244 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9877
153
+ 2025-09-23 04:17:34,744 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0177 | Val mean-roc_auc_score: 0.9872
154
+ 2025-09-23 04:17:38,802 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.9853
155
+ 2025-09-23 04:17:42,845 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.9862
156
+ 2025-09-23 04:17:46,911 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.9869
157
+ 2025-09-23 04:17:51,084 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9859
158
+ 2025-09-23 04:17:56,765 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9865
159
+ 2025-09-23 04:18:00,796 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9872
160
+ 2025-09-23 04:18:04,878 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9872
161
+ 2025-09-23 04:18:08,952 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9856
162
+ 2025-09-23 04:18:13,051 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9868
163
+ 2025-09-23 04:18:17,530 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9871
164
+ 2025-09-23 04:18:21,613 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9871
165
+ 2025-09-23 04:18:25,681 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9872
166
+ 2025-09-23 04:18:29,745 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9872
167
+ 2025-09-23 04:18:33,797 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9872
168
+ 2025-09-23 04:18:38,256 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9877
169
+ 2025-09-23 04:18:42,381 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0005 | Val mean-roc_auc_score: 0.9877
170
+ 2025-09-23 04:18:46,529 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9872
171
+ 2025-09-23 04:18:50,589 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9872
172
+ 2025-09-23 04:18:54,702 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.9875
173
+ 2025-09-23 04:18:59,190 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9872
174
+ 2025-09-23 04:19:03,376 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.9878
175
+ 2025-09-23 04:19:07,433 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9882
176
+ 2025-09-23 04:19:11,489 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9888
177
+ 2025-09-23 04:19:15,593 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0001 | Val mean-roc_auc_score: 0.9888
178
+ 2025-09-23 04:19:20,086 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9883
179
+ 2025-09-23 04:19:24,134 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9888
180
+ 2025-09-23 04:19:28,261 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9894
181
+ 2025-09-23 04:19:32,315 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9889
182
+ 2025-09-23 04:19:36,402 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9883
183
+ 2025-09-23 04:19:40,883 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9883
184
+ 2025-09-23 04:19:45,058 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9856
185
+ 2025-09-23 04:19:49,103 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9877
186
+ 2025-09-23 04:19:54,367 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9865
187
+ 2025-09-23 04:19:58,477 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9883
188
+ 2025-09-23 04:20:03,007 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9883
189
+ 2025-09-23 04:20:07,123 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9877
190
+ 2025-09-23 04:20:11,183 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9856
191
+ 2025-09-23 04:20:15,264 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9853
192
+ 2025-09-23 04:20:19,359 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9856
193
+ 2025-09-23 04:20:23,895 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9856
194
+ 2025-09-23 04:20:27,948 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9829
195
+ 2025-09-23 04:20:32,080 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9857
196
+ 2025-09-23 04:20:36,217 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.9868
197
+ 2025-09-23 04:20:40,278 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9877
198
+ 2025-09-23 04:20:44,793 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9859
199
+ 2025-09-23 04:20:48,892 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9848
200
+ 2025-09-23 04:20:52,978 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9834
201
+ 2025-09-23 04:20:57,101 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9839
202
+ 2025-09-23 04:21:01,157 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9834
203
+ 2025-09-23 04:21:05,655 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9831
204
+ 2025-09-23 04:21:09,740 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0002 | Val mean-roc_auc_score: 0.9831
205
+ 2025-09-23 04:21:13,768 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9839
206
+ 2025-09-23 04:21:17,817 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.9819
207
+ 2025-09-23 04:21:21,904 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9772
208
+ 2025-09-23 04:21:26,398 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9837
209
+ 2025-09-23 04:21:30,448 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.9899
210
+ 2025-09-23 04:21:30,590 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 2886
211
+ 2025-09-23 04:21:31,106 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 78 with val mean-roc_auc_score: 0.9899
212
+ 2025-09-23 04:21:35,185 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.9875
213
+ 2025-09-23 04:21:39,257 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9872
214
+ 2025-09-23 04:21:43,291 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9854
215
+ 2025-09-23 04:21:48,929 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9806
216
+ 2025-09-23 04:21:52,966 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9814
217
+ 2025-09-23 04:21:57,060 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0009 | Val mean-roc_auc_score: 0.9778
218
+ 2025-09-23 04:22:01,146 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9736
219
+ 2025-09-23 04:22:05,241 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9618
220
+ 2025-09-23 04:22:09,780 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9602
221
+ 2025-09-23 04:22:13,907 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9506
222
+ 2025-09-23 04:22:17,949 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9616
223
+ 2025-09-23 04:22:22,046 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9390
224
+ 2025-09-23 04:22:26,115 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.9325
225
+ 2025-09-23 04:22:30,562 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0001 | Val mean-roc_auc_score: 0.9308
226
+ 2025-09-23 04:22:34,631 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9322
227
+ 2025-09-23 04:22:38,701 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.9893
228
+ 2025-09-23 04:22:42,799 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.9917
229
+ 2025-09-23 04:22:42,942 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 3515
230
+ 2025-09-23 04:22:43,463 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 95 with val mean-roc_auc_score: 0.9917
231
+ 2025-09-23 04:22:47,592 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0103 | Val mean-roc_auc_score: 0.9853
232
+ 2025-09-23 04:22:52,067 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0141 | Val mean-roc_auc_score: 0.9858
233
+ 2025-09-23 04:22:56,204 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.9856
234
+ 2025-09-23 04:23:00,279 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.9848
235
+ 2025-09-23 04:23:04,413 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9821
236
+ 2025-09-23 04:23:05,038 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.9944
237
+ 2025-09-23 04:23:05,488 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset clintox at 2025-09-23_04-23-05
238
+ 2025-09-23 04:23:08,971 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1410 | Val mean-roc_auc_score: 0.9526
239
+ 2025-09-23 04:23:08,971 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 37
240
+ 2025-09-23 04:23:09,489 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.9526
241
+ 2025-09-23 04:23:13,532 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.0437 | Val mean-roc_auc_score: 0.9610
242
+ 2025-09-23 04:23:13,699 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 74
243
+ 2025-09-23 04:23:14,213 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.9610
244
+ 2025-09-23 04:23:18,294 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.0196 | Val mean-roc_auc_score: 0.9811
245
+ 2025-09-23 04:23:18,470 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 111
246
+ 2025-09-23 04:23:18,978 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.9811
247
+ 2025-09-23 04:23:23,032 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0287 | Val mean-roc_auc_score: 0.9835
248
+ 2025-09-23 04:23:23,211 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 148
249
+ 2025-09-23 04:23:23,734 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.9835
250
+ 2025-09-23 04:23:27,846 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0248 | Val mean-roc_auc_score: 0.9835
251
+ 2025-09-23 04:23:31,959 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0189 | Val mean-roc_auc_score: 0.9841
252
+ 2025-09-23 04:23:32,537 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 222
253
+ 2025-09-23 04:23:33,046 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.9841
254
+ 2025-09-23 04:23:37,152 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0170 | Val mean-roc_auc_score: 0.9864
255
+ 2025-09-23 04:23:37,327 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 259
256
+ 2025-09-23 04:23:37,832 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 7 with val mean-roc_auc_score: 0.9864
257
+ 2025-09-23 04:23:42,168 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0135 | Val mean-roc_auc_score: 0.9847
258
+ 2025-09-23 04:23:46,206 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0114 | Val mean-roc_auc_score: 0.9864
259
+ 2025-09-23 04:23:50,286 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0097 | Val mean-roc_auc_score: 0.9869
260
+ 2025-09-23 04:23:50,468 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 370
261
+ 2025-09-23 04:23:50,988 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 10 with val mean-roc_auc_score: 0.9869
262
+ 2025-09-23 04:23:55,092 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0007 | Val mean-roc_auc_score: 0.9857
263
+ 2025-09-23 04:23:59,564 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.9881
264
+ 2025-09-23 04:23:59,738 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 444
265
+ 2025-09-23 04:24:00,249 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 12 with val mean-roc_auc_score: 0.9881
266
+ 2025-09-23 04:24:04,291 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.9881
267
+ 2025-09-23 04:24:08,369 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0146 | Val mean-roc_auc_score: 0.9919
268
+ 2025-09-23 04:24:08,540 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 518
269
+ 2025-09-23 04:24:09,050 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 14 with val mean-roc_auc_score: 0.9919
270
+ 2025-09-23 04:24:13,158 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0118 | Val mean-roc_auc_score: 0.9881
271
+ 2025-09-23 04:24:17,222 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.9893
272
+ 2025-09-23 04:24:21,704 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.9894
273
+ 2025-09-23 04:24:25,796 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.9855
274
+ 2025-09-23 04:24:29,888 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0194 | Val mean-roc_auc_score: 0.9870
275
+ 2025-09-23 04:24:33,951 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.9887
276
+ 2025-09-23 04:24:37,998 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.9876
277
+ 2025-09-23 04:24:42,466 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9881
278
+ 2025-09-23 04:24:46,566 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9876
279
+ 2025-09-23 04:24:50,651 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9882
280
+ 2025-09-23 04:24:54,736 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.9877
281
+ 2025-09-23 04:24:58,797 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.9877
282
+ 2025-09-23 04:25:04,496 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9882
283
+ 2025-09-23 04:25:08,606 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.9882
284
+ 2025-09-23 04:25:12,738 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.9882
285
+ 2025-09-23 04:25:16,802 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0006 | Val mean-roc_auc_score: 0.9882
286
+ 2025-09-23 04:25:20,886 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9882
287
+ 2025-09-23 04:25:25,424 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9882
288
+ 2025-09-23 04:25:29,513 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.9882
289
+ 2025-09-23 04:25:33,580 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9885
290
+ 2025-09-23 04:25:37,675 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9877
291
+ 2025-09-23 04:25:41,768 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9877
292
+ 2025-09-23 04:25:46,233 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9879
293
+ 2025-09-23 04:25:50,298 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0002 | Val mean-roc_auc_score: 0.9877
294
+ 2025-09-23 04:25:54,363 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9882
295
+ 2025-09-23 04:25:58,420 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9877
296
+ 2025-09-23 04:26:02,510 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.9882
297
+ 2025-09-23 04:26:07,004 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9877
298
+ 2025-09-23 04:26:11,025 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.9877
299
+ 2025-09-23 04:26:15,160 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9877
300
+ 2025-09-23 04:26:19,246 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9865
301
+ 2025-09-23 04:26:23,343 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9877
302
+ 2025-09-23 04:26:27,807 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9887
303
+ 2025-09-23 04:26:31,917 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9887
304
+ 2025-09-23 04:26:35,978 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.9877
305
+ 2025-09-23 04:26:40,029 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9887
306
+ 2025-09-23 04:26:44,111 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9877
307
+ 2025-09-23 04:26:48,600 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.9877
308
+ 2025-09-23 04:26:52,684 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9877
309
+ 2025-09-23 04:26:56,771 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9877
310
+ 2025-09-23 04:27:02,103 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9877
311
+ 2025-09-23 04:27:06,242 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9874
312
+ 2025-09-23 04:27:10,761 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.9871
313
+ 2025-09-23 04:27:14,849 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9877
314
+ 2025-09-23 04:27:18,936 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9877
315
+ 2025-09-23 04:27:23,015 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.9865
316
+ 2025-09-23 04:27:27,065 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.9877
317
+ 2025-09-23 04:27:31,546 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.9882
318
+ 2025-09-23 04:27:35,627 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9877
319
+ 2025-09-23 04:27:39,721 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9871
320
+ 2025-09-23 04:27:43,790 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0002 | Val mean-roc_auc_score: 0.9871
321
+ 2025-09-23 04:27:47,888 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9871
322
+ 2025-09-23 04:27:52,359 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9865
323
+ 2025-09-23 04:27:56,444 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0054 | Val mean-roc_auc_score: 0.9865
324
+ 2025-09-23 04:28:00,538 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.9882
325
+ 2025-09-23 04:28:04,614 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.9812
326
+ 2025-09-23 04:28:08,708 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.9818
327
+ 2025-09-23 04:28:13,436 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.9816
328
+ 2025-09-23 04:28:17,519 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0001 | Val mean-roc_auc_score: 0.9783
329
+ 2025-09-23 04:28:21,566 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.9778
330
+ 2025-09-23 04:28:25,645 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.9760
331
+ 2025-09-23 04:28:29,723 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9716
332
+ 2025-09-23 04:28:34,189 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9676
333
+ 2025-09-23 04:28:38,226 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.9740
334
+ 2025-09-23 04:28:42,326 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0147 | Val mean-roc_auc_score: 0.9860
335
+ 2025-09-23 04:28:46,456 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0178 | Val mean-roc_auc_score: 0.9938
336
+ 2025-09-23 04:28:46,604 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Global step of best model: 2960
337
+ 2025-09-23 04:28:47,119 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Best model saved at epoch 80 with val mean-roc_auc_score: 0.9938
338
+ 2025-09-23 04:28:51,211 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.9926
339
+ 2025-09-23 04:28:56,902 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9920
340
+ 2025-09-23 04:29:00,950 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.9925
341
+ 2025-09-23 04:29:05,055 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.9925
342
+ 2025-09-23 04:29:09,126 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.9925
343
+ 2025-09-23 04:29:13,199 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.9925
344
+ 2025-09-23 04:29:17,780 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.9925
345
+ 2025-09-23 04:29:21,843 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9925
346
+ 2025-09-23 04:29:25,935 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9923
347
+ 2025-09-23 04:29:30,025 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9925
348
+ 2025-09-23 04:29:34,057 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9923
349
+ 2025-09-23 04:29:38,572 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0002 | Val mean-roc_auc_score: 0.9925
350
+ 2025-09-23 04:29:42,721 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9915
351
+ 2025-09-23 04:29:46,769 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.9923
352
+ 2025-09-23 04:29:50,864 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.9915
353
+ 2025-09-23 04:29:54,990 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.9915
354
+ 2025-09-23 04:29:59,519 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9915
355
+ 2025-09-23 04:30:03,589 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.9909
356
+ 2025-09-23 04:30:07,630 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.9909
357
+ 2025-09-23 04:30:11,696 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.9915
358
+ 2025-09-23 04:30:12,322 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.9915
359
+ 2025-09-23 04:30:12,782 - logs_modchembert_clintox_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg mean-roc_auc_score: 0.9938, Std Dev: 0.0017
logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_hiv_epochs100_batch_size32_20250923_080632.log ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 08:06:32,216 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Running benchmark for dataset: hiv
2
+ 2025-09-23 08:06:32,216 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - dataset: hiv, tasks: ['HIV_active'], epochs: 100, learning rate: 3e-05
3
+ 2025-09-23 08:06:32,222 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset hiv at 2025-09-23_08-06-32
4
+ 2025-09-23 08:07:43,657 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1267 | Val mean-roc_auc_score: 0.8142
5
+ 2025-09-23 08:07:43,657 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 1027
6
+ 2025-09-23 08:07:44,188 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.8142
7
+ 2025-09-23 08:08:57,955 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1071 | Val mean-roc_auc_score: 0.8143
8
+ 2025-09-23 08:08:58,093 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 2054
9
+ 2025-09-23 08:08:58,626 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.8143
10
+ 2025-09-23 08:10:12,595 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1211 | Val mean-roc_auc_score: 0.8301
11
+ 2025-09-23 08:10:12,741 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 3081
12
+ 2025-09-23 08:10:13,287 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.8301
13
+ 2025-09-23 08:11:26,560 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0830 | Val mean-roc_auc_score: 0.8170
14
+ 2025-09-23 08:12:40,706 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0634 | Val mean-roc_auc_score: 0.8190
15
+ 2025-09-23 08:13:54,675 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0519 | Val mean-roc_auc_score: 0.8123
16
+ 2025-09-23 08:15:08,319 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0502 | Val mean-roc_auc_score: 0.7999
17
+ 2025-09-23 08:16:22,667 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0309 | Val mean-roc_auc_score: 0.8221
18
+ 2025-09-23 08:17:36,094 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0371 | Val mean-roc_auc_score: 0.7995
19
+ 2025-09-23 08:18:49,713 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0312 | Val mean-roc_auc_score: 0.7784
20
+ 2025-09-23 08:20:03,582 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0121 | Val mean-roc_auc_score: 0.7890
21
+ 2025-09-23 08:21:17,424 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0162 | Val mean-roc_auc_score: 0.8042
22
+ 2025-09-23 08:22:31,117 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0251 | Val mean-roc_auc_score: 0.7946
23
+ 2025-09-23 08:23:45,019 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0190 | Val mean-roc_auc_score: 0.7948
24
+ 2025-09-23 08:24:58,791 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.7945
25
+ 2025-09-23 08:26:12,469 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0171 | Val mean-roc_auc_score: 0.7931
26
+ 2025-09-23 08:27:25,746 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0110 | Val mean-roc_auc_score: 0.7893
27
+ 2025-09-23 08:28:38,584 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0161 | Val mean-roc_auc_score: 0.7844
28
+ 2025-09-23 08:29:52,657 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7902
29
+ 2025-09-23 08:31:05,782 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0148 | Val mean-roc_auc_score: 0.7958
30
+ 2025-09-23 08:32:19,477 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7979
31
+ 2025-09-23 08:33:32,135 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0099 | Val mean-roc_auc_score: 0.7920
32
+ 2025-09-23 08:34:44,973 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7915
33
+ 2025-09-23 08:35:57,554 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.7862
34
+ 2025-09-23 08:37:10,333 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.7886
35
+ 2025-09-23 08:38:22,885 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0134 | Val mean-roc_auc_score: 0.7836
36
+ 2025-09-23 08:39:36,349 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0122 | Val mean-roc_auc_score: 0.7885
37
+ 2025-09-23 08:40:48,966 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7798
38
+ 2025-09-23 08:42:01,856 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.7756
39
+ 2025-09-23 08:43:14,899 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7765
40
+ 2025-09-23 08:44:27,453 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7860
41
+ 2025-09-23 08:45:40,564 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0075 | Val mean-roc_auc_score: 0.7841
42
+ 2025-09-23 08:46:53,049 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7857
43
+ 2025-09-23 08:48:06,952 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7752
44
+ 2025-09-23 08:49:20,876 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7814
45
+ 2025-09-23 08:50:35,802 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.7820
46
+ 2025-09-23 08:51:51,459 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7778
47
+ 2025-09-23 08:53:06,124 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.7826
48
+ 2025-09-23 08:54:21,146 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0080 | Val mean-roc_auc_score: 0.7857
49
+ 2025-09-23 08:55:36,035 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.7896
50
+ 2025-09-23 08:56:50,865 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.7875
51
+ 2025-09-23 08:58:05,708 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7880
52
+ 2025-09-23 08:59:20,587 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7920
53
+ 2025-09-23 09:00:34,604 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.7912
54
+ 2025-09-23 09:01:48,596 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0072 | Val mean-roc_auc_score: 0.7890
55
+ 2025-09-23 09:03:02,500 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7819
56
+ 2025-09-23 09:04:15,681 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.7835
57
+ 2025-09-23 09:05:28,883 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7833
58
+ 2025-09-23 09:06:43,304 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7863
59
+ 2025-09-23 09:07:56,868 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.7858
60
+ 2025-09-23 09:09:11,289 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7912
61
+ 2025-09-23 09:10:26,154 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.7910
62
+ 2025-09-23 09:11:39,820 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.7897
63
+ 2025-09-23 09:12:54,479 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.7885
64
+ 2025-09-23 09:14:08,919 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7882
65
+ 2025-09-23 09:15:22,546 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7907
66
+ 2025-09-23 09:16:35,074 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7868
67
+ 2025-09-23 09:17:46,438 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7907
68
+ 2025-09-23 09:18:59,493 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7885
69
+ 2025-09-23 09:20:12,125 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7910
70
+ 2025-09-23 09:21:25,330 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7904
71
+ 2025-09-23 09:22:37,958 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7827
72
+ 2025-09-23 09:23:50,665 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0000 | Val mean-roc_auc_score: 0.7817
73
+ 2025-09-23 09:25:03,375 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.7827
74
+ 2025-09-23 09:26:15,937 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7849
75
+ 2025-09-23 09:27:28,768 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.7810
76
+ 2025-09-23 09:28:41,938 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7822
77
+ 2025-09-23 09:29:54,125 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0017 | Val mean-roc_auc_score: 0.7821
78
+ 2025-09-23 09:31:07,101 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.7836
79
+ 2025-09-23 09:32:20,179 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0031 | Val mean-roc_auc_score: 0.7827
80
+ 2025-09-23 09:33:32,657 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7815
81
+ 2025-09-23 09:34:45,805 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7819
82
+ 2025-09-23 09:35:58,275 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.7774
83
+ 2025-09-23 09:37:10,851 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7828
84
+ 2025-09-23 09:38:24,260 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7860
85
+ 2025-09-23 09:39:37,551 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.7839
86
+ 2025-09-23 09:40:50,045 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7831
87
+ 2025-09-23 09:42:03,003 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0004 | Val mean-roc_auc_score: 0.7831
88
+ 2025-09-23 09:43:16,919 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7830
89
+ 2025-09-23 09:44:30,425 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0041 | Val mean-roc_auc_score: 0.7814
90
+ 2025-09-23 09:45:44,991 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.7850
91
+ 2025-09-23 09:46:59,353 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0010 | Val mean-roc_auc_score: 0.7814
92
+ 2025-09-23 09:48:13,654 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7818
93
+ 2025-09-23 09:49:27,841 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7829
94
+ 2025-09-23 09:50:43,570 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7823
95
+ 2025-09-23 09:51:59,836 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7817
96
+ 2025-09-23 09:53:15,753 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.7848
97
+ 2025-09-23 09:54:31,231 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7845
98
+ 2025-09-23 09:55:47,083 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0006 | Val mean-roc_auc_score: 0.7839
99
+ 2025-09-23 09:57:02,251 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7838
100
+ 2025-09-23 09:58:18,052 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7847
101
+ 2025-09-23 09:59:33,637 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.7830
102
+ 2025-09-23 10:00:49,442 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7865
103
+ 2025-09-23 10:02:04,608 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7840
104
+ 2025-09-23 10:03:20,067 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.7818
105
+ 2025-09-23 10:04:36,110 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7841
106
+ 2025-09-23 10:05:52,428 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7815
107
+ 2025-09-23 10:07:08,016 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7849
108
+ 2025-09-23 10:08:23,494 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0035 | Val mean-roc_auc_score: 0.7848
109
+ 2025-09-23 10:09:38,876 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.7838
110
+ 2025-09-23 10:09:43,098 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.7774
111
+ 2025-09-23 10:09:43,569 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset hiv at 2025-09-23_10-09-43
112
+ 2025-09-23 10:10:54,225 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1140 | Val mean-roc_auc_score: 0.8210
113
+ 2025-09-23 10:10:54,225 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 1027
114
+ 2025-09-23 10:10:54,762 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.8210
115
+ 2025-09-23 10:12:10,053 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1082 | Val mean-roc_auc_score: 0.8269
116
+ 2025-09-23 10:12:10,205 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 2054
117
+ 2025-09-23 10:12:10,752 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.8269
118
+ 2025-09-23 10:13:25,445 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.0718 | Val mean-roc_auc_score: 0.8212
119
+ 2025-09-23 10:14:40,850 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.1260 | Val mean-roc_auc_score: 0.8173
120
+ 2025-09-23 10:15:56,990 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0737 | Val mean-roc_auc_score: 0.7903
121
+ 2025-09-23 10:17:12,673 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0514 | Val mean-roc_auc_score: 0.8364
122
+ 2025-09-23 10:17:13,292 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 6162
123
+ 2025-09-23 10:17:13,824 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.8364
124
+ 2025-09-23 10:18:29,400 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0393 | Val mean-roc_auc_score: 0.8227
125
+ 2025-09-23 10:19:44,404 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0312 | Val mean-roc_auc_score: 0.8341
126
+ 2025-09-23 10:20:59,917 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0236 | Val mean-roc_auc_score: 0.8164
127
+ 2025-09-23 10:22:15,432 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0218 | Val mean-roc_auc_score: 0.7967
128
+ 2025-09-23 10:23:31,001 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0125 | Val mean-roc_auc_score: 0.8168
129
+ 2025-09-23 10:24:32,588 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0131 | Val mean-roc_auc_score: 0.8179
130
+ 2025-09-23 10:25:33,509 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0124 | Val mean-roc_auc_score: 0.7880
131
+ 2025-09-23 10:26:34,334 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0141 | Val mean-roc_auc_score: 0.8039
132
+ 2025-09-23 10:27:35,037 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.8033
133
+ 2025-09-23 10:28:35,959 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.8028
134
+ 2025-09-23 10:29:37,136 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0130 | Val mean-roc_auc_score: 0.8130
135
+ 2025-09-23 10:30:37,733 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.7994
136
+ 2025-09-23 10:31:38,651 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.7974
137
+ 2025-09-23 10:32:39,272 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.7952
138
+ 2025-09-23 10:33:40,323 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7883
139
+ 2025-09-23 10:34:41,157 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7840
140
+ 2025-09-23 10:35:41,967 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7906
141
+ 2025-09-23 10:36:42,841 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7924
142
+ 2025-09-23 10:37:43,445 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7887
143
+ 2025-09-23 10:38:44,502 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0009 | Val mean-roc_auc_score: 0.7853
144
+ 2025-09-23 10:39:45,808 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.7843
145
+ 2025-09-23 10:40:46,231 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7879
146
+ 2025-09-23 10:41:47,290 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7830
147
+ 2025-09-23 10:42:46,679 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7762
148
+ 2025-09-23 10:43:46,163 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0098 | Val mean-roc_auc_score: 0.8043
149
+ 2025-09-23 10:44:45,523 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7976
150
+ 2025-09-23 10:45:44,315 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7976
151
+ 2025-09-23 10:46:43,673 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7936
152
+ 2025-09-23 10:47:42,962 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.8007
153
+ 2025-09-23 10:48:42,302 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7968
154
+ 2025-09-23 10:49:42,835 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7930
155
+ 2025-09-23 10:50:41,958 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7859
156
+ 2025-09-23 10:51:41,563 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.7934
157
+ 2025-09-23 10:52:40,402 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7868
158
+ 2025-09-23 10:53:39,641 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0001 | Val mean-roc_auc_score: 0.7888
159
+ 2025-09-23 10:54:39,022 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.7878
160
+ 2025-09-23 10:55:37,904 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7847
161
+ 2025-09-23 10:56:37,440 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0053 | Val mean-roc_auc_score: 0.7874
162
+ 2025-09-23 10:57:36,290 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.7911
163
+ 2025-09-23 10:58:35,876 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7825
164
+ 2025-09-23 10:59:35,255 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0039 | Val mean-roc_auc_score: 0.7795
165
+ 2025-09-23 11:00:34,245 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7878
166
+ 2025-09-23 11:01:33,449 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.7816
167
+ 2025-09-23 11:02:32,336 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.7785
168
+ 2025-09-23 11:03:31,588 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.7855
169
+ 2025-09-23 11:04:30,863 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7794
170
+ 2025-09-23 11:05:29,973 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7831
171
+ 2025-09-23 11:06:29,443 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7874
172
+ 2025-09-23 11:07:28,244 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.7875
173
+ 2025-09-23 11:08:27,988 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0009 | Val mean-roc_auc_score: 0.7865
174
+ 2025-09-23 11:09:27,254 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.7826
175
+ 2025-09-23 11:10:25,970 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7846
176
+ 2025-09-23 11:11:25,234 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.7885
177
+ 2025-09-23 11:12:24,501 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7828
178
+ 2025-09-23 11:13:23,738 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0014 | Val mean-roc_auc_score: 0.7838
179
+ 2025-09-23 11:14:23,261 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.7834
180
+ 2025-09-23 11:15:22,184 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0000 | Val mean-roc_auc_score: 0.7830
181
+ 2025-09-23 11:16:21,599 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0011 | Val mean-roc_auc_score: 0.7886
182
+ 2025-09-23 11:17:20,345 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0020 | Val mean-roc_auc_score: 0.7852
183
+ 2025-09-23 11:18:19,611 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.7810
184
+ 2025-09-23 11:19:19,249 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0054 | Val mean-roc_auc_score: 0.8145
185
+ 2025-09-23 11:20:18,170 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.8106
186
+ 2025-09-23 11:21:17,433 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0026 | Val mean-roc_auc_score: 0.8082
187
+ 2025-09-23 11:22:16,198 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.8069
188
+ 2025-09-23 11:23:15,610 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.8093
189
+ 2025-09-23 11:24:14,925 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.8080
190
+ 2025-09-23 11:25:13,851 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.8048
191
+ 2025-09-23 11:26:13,110 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.8063
192
+ 2025-09-23 11:27:12,493 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.8050
193
+ 2025-09-23 11:28:11,807 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.8070
194
+ 2025-09-23 11:29:11,042 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.8051
195
+ 2025-09-23 11:30:10,240 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0005 | Val mean-roc_auc_score: 0.8044
196
+ 2025-09-23 11:31:09,583 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.8053
197
+ 2025-09-23 11:32:08,600 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.8049
198
+ 2025-09-23 11:33:08,105 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7982
199
+ 2025-09-23 11:34:07,751 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.7995
200
+ 2025-09-23 11:35:07,016 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0012 | Val mean-roc_auc_score: 0.8003
201
+ 2025-09-23 11:36:06,561 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7989
202
+ 2025-09-23 11:37:05,480 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7988
203
+ 2025-09-23 11:38:04,969 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.8001
204
+ 2025-09-23 11:39:04,522 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7997
205
+ 2025-09-23 11:40:03,200 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.8005
206
+ 2025-09-23 11:41:02,642 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0001 | Val mean-roc_auc_score: 0.8011
207
+ 2025-09-23 11:42:01,665 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.8012
208
+ 2025-09-23 11:43:01,092 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0022 | Val mean-roc_auc_score: 0.8026
209
+ 2025-09-23 11:44:00,256 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.8019
210
+ 2025-09-23 11:44:59,226 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.8047
211
+ 2025-09-23 11:45:58,925 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0045 | Val mean-roc_auc_score: 0.8042
212
+ 2025-09-23 11:46:57,778 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.8022
213
+ 2025-09-23 11:47:57,286 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.8020
214
+ 2025-09-23 11:48:56,642 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0023 | Val mean-roc_auc_score: 0.8020
215
+ 2025-09-23 11:49:55,606 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.8030
216
+ 2025-09-23 11:50:54,975 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.7992
217
+ 2025-09-23 11:51:53,647 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7973
218
+ 2025-09-23 11:51:56,852 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.7743
219
+ 2025-09-23 11:51:57,489 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset hiv at 2025-09-23_11-51-57
220
+ 2025-09-23 11:52:53,214 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1059 | Val mean-roc_auc_score: 0.7784
221
+ 2025-09-23 11:52:53,214 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 1027
222
+ 2025-09-23 11:52:53,726 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.7784
223
+ 2025-09-23 11:53:53,334 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1019 | Val mean-roc_auc_score: 0.8107
224
+ 2025-09-23 11:53:53,465 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 2054
225
+ 2025-09-23 11:53:53,970 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.8107
226
+ 2025-09-23 11:54:52,522 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1204 | Val mean-roc_auc_score: 0.8196
227
+ 2025-09-23 11:54:52,655 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 3081
228
+ 2025-09-23 11:54:53,162 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.8196
229
+ 2025-09-23 11:55:51,995 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0349 | Val mean-roc_auc_score: 0.8314
230
+ 2025-09-23 11:55:52,127 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Global step of best model: 4108
231
+ 2025-09-23 11:55:52,633 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.8314
232
+ 2025-09-23 11:56:52,122 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0621 | Val mean-roc_auc_score: 0.8265
233
+ 2025-09-23 11:57:51,064 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0418 | Val mean-roc_auc_score: 0.8149
234
+ 2025-09-23 11:58:50,718 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0471 | Val mean-roc_auc_score: 0.8136
235
+ 2025-09-23 11:59:49,465 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0435 | Val mean-roc_auc_score: 0.7832
236
+ 2025-09-23 12:00:48,992 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0278 | Val mean-roc_auc_score: 0.7980
237
+ 2025-09-23 12:01:48,036 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0250 | Val mean-roc_auc_score: 0.7917
238
+ 2025-09-23 12:02:47,523 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0206 | Val mean-roc_auc_score: 0.7479
239
+ 2025-09-23 12:03:47,066 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0122 | Val mean-roc_auc_score: 0.7810
240
+ 2025-09-23 12:04:45,812 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0162 | Val mean-roc_auc_score: 0.7801
241
+ 2025-09-23 12:05:45,442 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0095 | Val mean-roc_auc_score: 0.7718
242
+ 2025-09-23 12:06:44,440 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7668
243
+ 2025-09-23 12:07:43,696 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0105 | Val mean-roc_auc_score: 0.7686
244
+ 2025-09-23 12:08:43,368 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7622
245
+ 2025-09-23 12:09:42,477 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.7601
246
+ 2025-09-23 12:10:41,936 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.7549
247
+ 2025-09-23 12:11:41,124 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7605
248
+ 2025-09-23 12:12:40,546 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7542
249
+ 2025-09-23 12:13:40,135 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.7655
250
+ 2025-09-23 12:14:39,566 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.7665
251
+ 2025-09-23 12:15:38,822 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0118 | Val mean-roc_auc_score: 0.7630
252
+ 2025-09-23 12:16:37,945 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.7621
253
+ 2025-09-23 12:17:37,439 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.7474
254
+ 2025-09-23 12:18:37,168 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7689
255
+ 2025-09-23 12:19:36,313 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7589
256
+ 2025-09-23 12:20:35,958 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7614
257
+ 2025-09-23 12:21:35,209 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7563
258
+ 2025-09-23 12:22:35,376 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.7601
259
+ 2025-09-23 12:23:35,339 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7590
260
+ 2025-09-23 12:24:34,834 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.7535
261
+ 2025-09-23 12:25:34,225 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.7549
262
+ 2025-09-23 12:26:33,546 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.7521
263
+ 2025-09-23 12:27:33,503 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.7523
264
+ 2025-09-23 12:28:33,941 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7514
265
+ 2025-09-23 12:29:33,050 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7542
266
+ 2025-09-23 12:30:32,795 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7546
267
+ 2025-09-23 12:31:31,561 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7406
268
+ 2025-09-23 12:32:31,063 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0015 | Val mean-roc_auc_score: 0.7531
269
+ 2025-09-23 12:33:30,731 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7578
270
+ 2025-09-23 12:34:29,636 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.7580
271
+ 2025-09-23 12:35:29,538 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7634
272
+ 2025-09-23 12:36:28,367 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7660
273
+ 2025-09-23 12:37:28,218 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0142 | Val mean-roc_auc_score: 0.7700
274
+ 2025-09-23 12:38:27,989 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0049 | Val mean-roc_auc_score: 0.7620
275
+ 2025-09-23 12:39:26,950 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7656
276
+ 2025-09-23 12:40:26,487 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7551
277
+ 2025-09-23 12:41:25,615 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7526
278
+ 2025-09-23 12:42:25,483 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.7565
279
+ 2025-09-23 12:43:25,192 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0021 | Val mean-roc_auc_score: 0.7620
280
+ 2025-09-23 12:44:24,037 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7581
281
+ 2025-09-23 12:45:23,983 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.7568
282
+ 2025-09-23 12:46:22,860 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0038 | Val mean-roc_auc_score: 0.7583
283
+ 2025-09-23 12:47:22,385 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7539
284
+ 2025-09-23 12:48:21,708 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0016 | Val mean-roc_auc_score: 0.7510
285
+ 2025-09-23 12:49:20,530 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7554
286
+ 2025-09-23 12:50:20,580 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7590
287
+ 2025-09-23 12:51:19,705 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0024 | Val mean-roc_auc_score: 0.7593
288
+ 2025-09-23 12:52:19,252 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0051 | Val mean-roc_auc_score: 0.7545
289
+ 2025-09-23 12:53:19,066 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7590
290
+ 2025-09-23 12:54:18,038 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0006 | Val mean-roc_auc_score: 0.7642
291
+ 2025-09-23 12:55:17,535 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.7616
292
+ 2025-09-23 12:56:16,852 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0054 | Val mean-roc_auc_score: 0.7591
293
+ 2025-09-23 12:57:16,560 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0037 | Val mean-roc_auc_score: 0.7625
294
+ 2025-09-23 12:58:16,234 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0008 | Val mean-roc_auc_score: 0.7691
295
+ 2025-09-23 12:59:14,993 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0046 | Val mean-roc_auc_score: 0.7666
296
+ 2025-09-23 13:00:14,220 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.7650
297
+ 2025-09-23 13:01:13,010 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0030 | Val mean-roc_auc_score: 0.7663
298
+ 2025-09-23 13:02:12,751 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7621
299
+ 2025-09-23 13:03:12,517 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.7642
300
+ 2025-09-23 13:04:11,551 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7615
301
+ 2025-09-23 13:05:11,398 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7610
302
+ 2025-09-23 13:06:11,380 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0034 | Val mean-roc_auc_score: 0.7623
303
+ 2025-09-23 13:07:11,174 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.7597
304
+ 2025-09-23 13:08:10,784 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7557
305
+ 2025-09-23 13:09:09,835 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0160 | Val mean-roc_auc_score: 0.7554
306
+ 2025-09-23 13:10:09,527 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.7582
307
+ 2025-09-23 13:11:08,796 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7604
308
+ 2025-09-23 13:12:08,298 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0029 | Val mean-roc_auc_score: 0.7620
309
+ 2025-09-23 13:13:08,041 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.7642
310
+ 2025-09-23 13:14:07,076 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0018 | Val mean-roc_auc_score: 0.7701
311
+ 2025-09-23 13:15:06,865 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0032 | Val mean-roc_auc_score: 0.7683
312
+ 2025-09-23 13:16:05,769 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0028 | Val mean-roc_auc_score: 0.7697
313
+ 2025-09-23 13:17:05,685 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.7669
314
+ 2025-09-23 13:18:05,487 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7647
315
+ 2025-09-23 13:19:04,461 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7671
316
+ 2025-09-23 13:20:04,403 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0040 | Val mean-roc_auc_score: 0.7681
317
+ 2025-09-23 13:21:03,098 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7656
318
+ 2025-09-23 13:22:02,851 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0036 | Val mean-roc_auc_score: 0.7672
319
+ 2025-09-23 13:23:02,671 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0033 | Val mean-roc_auc_score: 0.7655
320
+ 2025-09-23 13:24:01,989 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0013 | Val mean-roc_auc_score: 0.7626
321
+ 2025-09-23 13:25:01,663 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0047 | Val mean-roc_auc_score: 0.7697
322
+ 2025-09-23 13:26:00,752 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0044 | Val mean-roc_auc_score: 0.7660
323
+ 2025-09-23 13:27:00,481 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0043 | Val mean-roc_auc_score: 0.7674
324
+ 2025-09-23 13:28:00,107 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0019 | Val mean-roc_auc_score: 0.7639
325
+ 2025-09-23 13:28:59,292 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0042 | Val mean-roc_auc_score: 0.7675
326
+ 2025-09-23 13:29:59,005 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0027 | Val mean-roc_auc_score: 0.7643
327
+ 2025-09-23 13:30:58,161 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0025 | Val mean-roc_auc_score: 0.7621
328
+ 2025-09-23 13:31:01,432 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.7692
329
+ 2025-09-23 13:31:02,251 - logs_modchembert_hiv_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg mean-roc_auc_score: 0.7737, Std Dev: 0.0034
logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_sider_epochs100_batch_size32_20250923_034834.log ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 03:48:34,409 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Running benchmark for dataset: sider
2
+ 2025-09-23 03:48:34,409 - logs_modchembert_sider_epochs100_batch_size32 - INFO - dataset: sider, tasks: ['Hepatobiliary disorders', 'Metabolism and nutrition disorders', 'Product issues', 'Eye disorders', 'Investigations', 'Musculoskeletal and connective tissue disorders', 'Gastrointestinal disorders', 'Social circumstances', 'Immune system disorders', 'Reproductive system and breast disorders', 'Neoplasms benign, malignant and unspecified (incl cysts and polyps)', 'General disorders and administration site conditions', 'Endocrine disorders', 'Surgical and medical procedures', 'Vascular disorders', 'Blood and lymphatic system disorders', 'Skin and subcutaneous tissue disorders', 'Congenital, familial and genetic disorders', 'Infections and infestations', 'Respiratory, thoracic and mediastinal disorders', 'Psychiatric disorders', 'Renal and urinary disorders', 'Pregnancy, puerperium and perinatal conditions', 'Ear and labyrinth disorders', 'Cardiac disorders', 'Nervous system disorders', 'Injury, poisoning and procedural complications'], epochs: 100, learning rate: 3e-05
3
+ 2025-09-23 03:48:34,422 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset sider at 2025-09-23_03-48-34
4
+ 2025-09-23 03:48:38,036 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5786 | Val mean-roc_auc_score: 0.5419
5
+ 2025-09-23 03:48:38,036 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 35
6
+ 2025-09-23 03:48:38,577 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.5419
7
+ 2025-09-23 03:48:42,478 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.5143 | Val mean-roc_auc_score: 0.5483
8
+ 2025-09-23 03:48:42,650 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 70
9
+ 2025-09-23 03:48:43,160 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.5483
10
+ 2025-09-23 03:48:47,145 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.5094 | Val mean-roc_auc_score: 0.5629
11
+ 2025-09-23 03:48:47,318 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 105
12
+ 2025-09-23 03:48:47,824 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.5629
13
+ 2025-09-23 03:48:51,729 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.4964 | Val mean-roc_auc_score: 0.5782
14
+ 2025-09-23 03:48:51,900 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 140
15
+ 2025-09-23 03:48:52,404 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.5782
16
+ 2025-09-23 03:48:56,297 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.4821 | Val mean-roc_auc_score: 0.5772
17
+ 2025-09-23 03:49:00,279 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.4656 | Val mean-roc_auc_score: 0.6011
18
+ 2025-09-23 03:49:00,856 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 210
19
+ 2025-09-23 03:49:01,365 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.6011
20
+ 2025-09-23 03:49:05,261 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.4446 | Val mean-roc_auc_score: 0.6058
21
+ 2025-09-23 03:49:05,435 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 245
22
+ 2025-09-23 03:49:05,945 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 7 with val mean-roc_auc_score: 0.6058
23
+ 2025-09-23 03:49:09,831 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.4161 | Val mean-roc_auc_score: 0.6168
24
+ 2025-09-23 03:49:10,009 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 280
25
+ 2025-09-23 03:49:10,520 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 8 with val mean-roc_auc_score: 0.6168
26
+ 2025-09-23 03:49:14,414 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.3896 | Val mean-roc_auc_score: 0.6305
27
+ 2025-09-23 03:49:14,586 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 315
28
+ 2025-09-23 03:49:15,096 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 9 with val mean-roc_auc_score: 0.6305
29
+ 2025-09-23 03:49:19,092 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.3571 | Val mean-roc_auc_score: 0.6201
30
+ 2025-09-23 03:49:22,998 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.3411 | Val mean-roc_auc_score: 0.6170
31
+ 2025-09-23 03:49:27,315 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.3219 | Val mean-roc_auc_score: 0.6029
32
+ 2025-09-23 03:49:31,163 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.3071 | Val mean-roc_auc_score: 0.6090
33
+ 2025-09-23 03:49:35,082 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.2929 | Val mean-roc_auc_score: 0.6175
34
+ 2025-09-23 03:49:38,996 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.2812 | Val mean-roc_auc_score: 0.6017
35
+ 2025-09-23 03:49:42,975 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.2661 | Val mean-roc_auc_score: 0.6020
36
+ 2025-09-23 03:49:47,278 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.2571 | Val mean-roc_auc_score: 0.6034
37
+ 2025-09-23 03:49:51,387 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.2510 | Val mean-roc_auc_score: 0.6059
38
+ 2025-09-23 03:49:55,283 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.2429 | Val mean-roc_auc_score: 0.5933
39
+ 2025-09-23 03:49:59,227 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.2375 | Val mean-roc_auc_score: 0.5986
40
+ 2025-09-23 03:50:03,162 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.2304 | Val mean-roc_auc_score: 0.5953
41
+ 2025-09-23 03:50:07,549 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.2188 | Val mean-roc_auc_score: 0.5975
42
+ 2025-09-23 03:50:11,404 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.2281 | Val mean-roc_auc_score: 0.6031
43
+ 2025-09-23 03:50:15,364 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.2116 | Val mean-roc_auc_score: 0.5968
44
+ 2025-09-23 03:50:19,218 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.2036 | Val mean-roc_auc_score: 0.6064
45
+ 2025-09-23 03:50:23,141 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.2031 | Val mean-roc_auc_score: 0.5909
46
+ 2025-09-23 03:50:27,432 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.1982 | Val mean-roc_auc_score: 0.6008
47
+ 2025-09-23 03:50:31,375 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.1902 | Val mean-roc_auc_score: 0.5953
48
+ 2025-09-23 03:50:36,485 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.1948 | Val mean-roc_auc_score: 0.5905
49
+ 2025-09-23 03:50:40,447 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.1848 | Val mean-roc_auc_score: 0.5983
50
+ 2025-09-23 03:50:44,358 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.1768 | Val mean-roc_auc_score: 0.6065
51
+ 2025-09-23 03:50:48,695 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.1727 | Val mean-roc_auc_score: 0.6014
52
+ 2025-09-23 03:50:52,617 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.1705 | Val mean-roc_auc_score: 0.5979
53
+ 2025-09-23 03:50:56,677 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.1652 | Val mean-roc_auc_score: 0.5962
54
+ 2025-09-23 03:51:00,571 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.1638 | Val mean-roc_auc_score: 0.5995
55
+ 2025-09-23 03:51:04,516 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.1625 | Val mean-roc_auc_score: 0.5949
56
+ 2025-09-23 03:51:08,840 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.1571 | Val mean-roc_auc_score: 0.5926
57
+ 2025-09-23 03:51:12,785 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.1542 | Val mean-roc_auc_score: 0.6030
58
+ 2025-09-23 03:51:16,688 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.1500 | Val mean-roc_auc_score: 0.5880
59
+ 2025-09-23 03:51:20,633 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.1491 | Val mean-roc_auc_score: 0.5828
60
+ 2025-09-23 03:51:24,526 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.1455 | Val mean-roc_auc_score: 0.5868
61
+ 2025-09-23 03:51:28,844 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.1446 | Val mean-roc_auc_score: 0.5878
62
+ 2025-09-23 03:51:32,811 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.1531 | Val mean-roc_auc_score: 0.5823
63
+ 2025-09-23 03:51:36,740 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.1402 | Val mean-roc_auc_score: 0.5851
64
+ 2025-09-23 03:51:40,747 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.1357 | Val mean-roc_auc_score: 0.5854
65
+ 2025-09-23 03:51:44,606 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.1375 | Val mean-roc_auc_score: 0.5771
66
+ 2025-09-23 03:51:48,947 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.1330 | Val mean-roc_auc_score: 0.5839
67
+ 2025-09-23 03:51:52,844 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.1286 | Val mean-roc_auc_score: 0.5824
68
+ 2025-09-23 03:51:56,756 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.1307 | Val mean-roc_auc_score: 0.5816
69
+ 2025-09-23 03:52:00,704 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.1277 | Val mean-roc_auc_score: 0.5816
70
+ 2025-09-23 03:52:04,688 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.1268 | Val mean-roc_auc_score: 0.5863
71
+ 2025-09-23 03:52:08,969 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.1289 | Val mean-roc_auc_score: 0.5849
72
+ 2025-09-23 03:52:12,899 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.1223 | Val mean-roc_auc_score: 0.5893
73
+ 2025-09-23 03:52:16,816 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.1205 | Val mean-roc_auc_score: 0.5829
74
+ 2025-09-23 03:52:20,741 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.1206 | Val mean-roc_auc_score: 0.5794
75
+ 2025-09-23 03:52:24,690 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.1196 | Val mean-roc_auc_score: 0.5779
76
+ 2025-09-23 03:52:29,050 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.1161 | Val mean-roc_auc_score: 0.5843
77
+ 2025-09-23 03:52:34,253 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.1135 | Val mean-roc_auc_score: 0.5796
78
+ 2025-09-23 03:52:38,146 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.1121 | Val mean-roc_auc_score: 0.5771
79
+ 2025-09-23 03:52:41,990 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.1112 | Val mean-roc_auc_score: 0.5800
80
+ 2025-09-23 03:52:45,917 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.1094 | Val mean-roc_auc_score: 0.5773
81
+ 2025-09-23 03:52:50,235 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.1112 | Val mean-roc_auc_score: 0.5849
82
+ 2025-09-23 03:52:54,341 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.1039 | Val mean-roc_auc_score: 0.5815
83
+ 2025-09-23 03:52:58,217 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.1085 | Val mean-roc_auc_score: 0.5801
84
+ 2025-09-23 03:53:02,138 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.1058 | Val mean-roc_auc_score: 0.5841
85
+ 2025-09-23 03:53:05,981 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.1102 | Val mean-roc_auc_score: 0.5752
86
+ 2025-09-23 03:53:10,258 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.1040 | Val mean-roc_auc_score: 0.5823
87
+ 2025-09-23 03:53:14,176 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.1036 | Val mean-roc_auc_score: 0.5733
88
+ 2025-09-23 03:53:18,109 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.1073 | Val mean-roc_auc_score: 0.5807
89
+ 2025-09-23 03:53:22,004 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.1018 | Val mean-roc_auc_score: 0.5805
90
+ 2025-09-23 03:53:25,897 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.1000 | Val mean-roc_auc_score: 0.5862
91
+ 2025-09-23 03:53:30,198 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0996 | Val mean-roc_auc_score: 0.5826
92
+ 2025-09-23 03:53:34,163 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0978 | Val mean-roc_auc_score: 0.5776
93
+ 2025-09-23 03:53:38,109 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0964 | Val mean-roc_auc_score: 0.5811
94
+ 2025-09-23 03:53:42,002 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0994 | Val mean-roc_auc_score: 0.5798
95
+ 2025-09-23 03:53:45,938 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0955 | Val mean-roc_auc_score: 0.5823
96
+ 2025-09-23 03:53:50,230 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0946 | Val mean-roc_auc_score: 0.5805
97
+ 2025-09-23 03:53:54,170 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0948 | Val mean-roc_auc_score: 0.5790
98
+ 2025-09-23 03:53:58,040 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0938 | Val mean-roc_auc_score: 0.5839
99
+ 2025-09-23 03:54:01,957 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0938 | Val mean-roc_auc_score: 0.5808
100
+ 2025-09-23 03:54:05,864 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0920 | Val mean-roc_auc_score: 0.5782
101
+ 2025-09-23 03:54:10,183 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0924 | Val mean-roc_auc_score: 0.5891
102
+ 2025-09-23 03:54:14,076 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0914 | Val mean-roc_auc_score: 0.5839
103
+ 2025-09-23 03:54:18,044 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0924 | Val mean-roc_auc_score: 0.5781
104
+ 2025-09-23 03:54:22,005 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0911 | Val mean-roc_auc_score: 0.5772
105
+ 2025-09-23 03:54:27,086 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0941 | Val mean-roc_auc_score: 0.5761
106
+ 2025-09-23 03:54:31,450 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0893 | Val mean-roc_auc_score: 0.5718
107
+ 2025-09-23 03:54:35,359 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0879 | Val mean-roc_auc_score: 0.5789
108
+ 2025-09-23 03:54:39,281 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0885 | Val mean-roc_auc_score: 0.5731
109
+ 2025-09-23 03:54:43,198 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0884 | Val mean-roc_auc_score: 0.5815
110
+ 2025-09-23 03:54:47,204 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0871 | Val mean-roc_auc_score: 0.5780
111
+ 2025-09-23 03:54:51,557 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0867 | Val mean-roc_auc_score: 0.5818
112
+ 2025-09-23 03:54:55,480 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0866 | Val mean-roc_auc_score: 0.5826
113
+ 2025-09-23 03:54:59,338 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0839 | Val mean-roc_auc_score: 0.5765
114
+ 2025-09-23 03:55:03,199 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0844 | Val mean-roc_auc_score: 0.5728
115
+ 2025-09-23 03:55:07,086 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0839 | Val mean-roc_auc_score: 0.5820
116
+ 2025-09-23 03:55:11,393 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0835 | Val mean-roc_auc_score: 0.5805
117
+ 2025-09-23 03:55:15,303 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0839 | Val mean-roc_auc_score: 0.5755
118
+ 2025-09-23 03:55:19,161 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0830 | Val mean-roc_auc_score: 0.5828
119
+ 2025-09-23 03:55:23,083 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0830 | Val mean-roc_auc_score: 0.5822
120
+ 2025-09-23 03:55:23,730 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.6515
121
+ 2025-09-23 03:55:24,156 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset sider at 2025-09-23_03-55-24
122
+ 2025-09-23 03:55:27,518 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5679 | Val mean-roc_auc_score: 0.5446
123
+ 2025-09-23 03:55:27,519 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 35
124
+ 2025-09-23 03:55:28,047 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.5446
125
+ 2025-09-23 03:55:32,300 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.5143 | Val mean-roc_auc_score: 0.5570
126
+ 2025-09-23 03:55:32,464 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 70
127
+ 2025-09-23 03:55:33,004 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.5570
128
+ 2025-09-23 03:55:36,925 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.5000 | Val mean-roc_auc_score: 0.5727
129
+ 2025-09-23 03:55:37,094 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 105
130
+ 2025-09-23 03:55:37,600 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.5727
131
+ 2025-09-23 03:55:41,460 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.4893 | Val mean-roc_auc_score: 0.5914
132
+ 2025-09-23 03:55:41,637 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 140
133
+ 2025-09-23 03:55:42,150 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.5914
134
+ 2025-09-23 03:55:46,070 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.4714 | Val mean-roc_auc_score: 0.5947
135
+ 2025-09-23 03:55:46,252 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 175
136
+ 2025-09-23 03:55:46,758 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val mean-roc_auc_score: 0.5947
137
+ 2025-09-23 03:55:50,697 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.4437 | Val mean-roc_auc_score: 0.5924
138
+ 2025-09-23 03:55:55,082 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.4214 | Val mean-roc_auc_score: 0.6068
139
+ 2025-09-23 03:55:55,257 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 245
140
+ 2025-09-23 03:55:55,770 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 7 with val mean-roc_auc_score: 0.6068
141
+ 2025-09-23 03:55:59,704 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.4071 | Val mean-roc_auc_score: 0.5916
142
+ 2025-09-23 03:56:03,610 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.3792 | Val mean-roc_auc_score: 0.5895
143
+ 2025-09-23 03:56:07,539 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.3589 | Val mean-roc_auc_score: 0.6174
144
+ 2025-09-23 03:56:07,714 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 350
145
+ 2025-09-23 03:56:08,232 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 10 with val mean-roc_auc_score: 0.6174
146
+ 2025-09-23 03:56:12,143 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.3446 | Val mean-roc_auc_score: 0.6003
147
+ 2025-09-23 03:56:16,443 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.3250 | Val mean-roc_auc_score: 0.5995
148
+ 2025-09-23 03:56:20,387 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.3179 | Val mean-roc_auc_score: 0.6160
149
+ 2025-09-23 03:56:24,287 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.3161 | Val mean-roc_auc_score: 0.5995
150
+ 2025-09-23 03:56:28,228 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.3013 | Val mean-roc_auc_score: 0.5948
151
+ 2025-09-23 03:56:32,087 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.2857 | Val mean-roc_auc_score: 0.6080
152
+ 2025-09-23 03:56:36,459 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.2804 | Val mean-roc_auc_score: 0.6098
153
+ 2025-09-23 03:56:40,373 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.2750 | Val mean-roc_auc_score: 0.6072
154
+ 2025-09-23 03:56:44,256 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.2661 | Val mean-roc_auc_score: 0.6144
155
+ 2025-09-23 03:56:48,190 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.2607 | Val mean-roc_auc_score: 0.6120
156
+ 2025-09-23 03:56:52,108 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.2536 | Val mean-roc_auc_score: 0.6095
157
+ 2025-09-23 03:56:56,389 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.2500 | Val mean-roc_auc_score: 0.6040
158
+ 2025-09-23 03:57:00,316 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.2531 | Val mean-roc_auc_score: 0.6119
159
+ 2025-09-23 03:57:04,253 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.2357 | Val mean-roc_auc_score: 0.6125
160
+ 2025-09-23 03:57:08,140 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.2321 | Val mean-roc_auc_score: 0.6104
161
+ 2025-09-23 03:57:12,056 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.2328 | Val mean-roc_auc_score: 0.6165
162
+ 2025-09-23 03:57:16,417 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.2268 | Val mean-roc_auc_score: 0.6130
163
+ 2025-09-23 03:57:20,342 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.2196 | Val mean-roc_auc_score: 0.6183
164
+ 2025-09-23 03:57:20,496 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 980
165
+ 2025-09-23 03:57:21,004 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 28 with val mean-roc_auc_score: 0.6183
166
+ 2025-09-23 03:57:26,053 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.2156 | Val mean-roc_auc_score: 0.6152
167
+ 2025-09-23 03:57:30,035 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.2080 | Val mean-roc_auc_score: 0.6161
168
+ 2025-09-23 03:57:33,979 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.2027 | Val mean-roc_auc_score: 0.6178
169
+ 2025-09-23 03:57:38,336 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.1992 | Val mean-roc_auc_score: 0.6219
170
+ 2025-09-23 03:57:38,512 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 1120
171
+ 2025-09-23 03:57:39,040 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 32 with val mean-roc_auc_score: 0.6219
172
+ 2025-09-23 03:57:43,066 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.1946 | Val mean-roc_auc_score: 0.6164
173
+ 2025-09-23 03:57:46,998 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.1946 | Val mean-roc_auc_score: 0.6152
174
+ 2025-09-23 03:57:50,937 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.1900 | Val mean-roc_auc_score: 0.6162
175
+ 2025-09-23 03:57:54,873 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.1884 | Val mean-roc_auc_score: 0.6201
176
+ 2025-09-23 03:57:59,163 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.1848 | Val mean-roc_auc_score: 0.6222
177
+ 2025-09-23 03:57:59,337 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 1295
178
+ 2025-09-23 03:57:59,844 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 37 with val mean-roc_auc_score: 0.6222
179
+ 2025-09-23 03:58:03,834 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.1823 | Val mean-roc_auc_score: 0.6176
180
+ 2025-09-23 03:58:07,792 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.1741 | Val mean-roc_auc_score: 0.6151
181
+ 2025-09-23 03:58:11,749 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.1741 | Val mean-roc_auc_score: 0.6187
182
+ 2025-09-23 03:58:15,702 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.1705 | Val mean-roc_auc_score: 0.6139
183
+ 2025-09-23 03:58:19,969 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.1661 | Val mean-roc_auc_score: 0.6172
184
+ 2025-09-23 03:58:23,897 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.1555 | Val mean-roc_auc_score: 0.6198
185
+ 2025-09-23 03:58:27,869 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.1616 | Val mean-roc_auc_score: 0.6168
186
+ 2025-09-23 03:58:31,742 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.1616 | Val mean-roc_auc_score: 0.6161
187
+ 2025-09-23 03:58:35,647 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.1547 | Val mean-roc_auc_score: 0.6182
188
+ 2025-09-23 03:58:39,939 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.1562 | Val mean-roc_auc_score: 0.6102
189
+ 2025-09-23 03:58:43,916 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.1518 | Val mean-roc_auc_score: 0.6094
190
+ 2025-09-23 03:58:47,836 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.1510 | Val mean-roc_auc_score: 0.6124
191
+ 2025-09-23 03:58:51,793 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.1482 | Val mean-roc_auc_score: 0.6137
192
+ 2025-09-23 03:58:55,702 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.1464 | Val mean-roc_auc_score: 0.6224
193
+ 2025-09-23 03:58:56,226 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 1785
194
+ 2025-09-23 03:58:56,730 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 51 with val mean-roc_auc_score: 0.6224
195
+ 2025-09-23 03:59:00,640 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.1445 | Val mean-roc_auc_score: 0.6137
196
+ 2025-09-23 03:59:04,568 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.1429 | Val mean-roc_auc_score: 0.6109
197
+ 2025-09-23 03:59:08,467 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.1420 | Val mean-roc_auc_score: 0.6061
198
+ 2025-09-23 03:59:12,409 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.1394 | Val mean-roc_auc_score: 0.6132
199
+ 2025-09-23 03:59:16,334 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.1375 | Val mean-roc_auc_score: 0.6101
200
+ 2025-09-23 03:59:20,655 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.1339 | Val mean-roc_auc_score: 0.6094
201
+ 2025-09-23 03:59:25,729 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.1344 | Val mean-roc_auc_score: 0.6094
202
+ 2025-09-23 03:59:29,618 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.1304 | Val mean-roc_auc_score: 0.6064
203
+ 2025-09-23 03:59:33,611 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.1295 | Val mean-roc_auc_score: 0.6088
204
+ 2025-09-23 03:59:37,489 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.1321 | Val mean-roc_auc_score: 0.6140
205
+ 2025-09-23 03:59:41,775 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.1286 | Val mean-roc_auc_score: 0.6062
206
+ 2025-09-23 03:59:45,756 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.1297 | Val mean-roc_auc_score: 0.6024
207
+ 2025-09-23 03:59:49,675 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.1259 | Val mean-roc_auc_score: 0.6121
208
+ 2025-09-23 03:59:53,576 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.1250 | Val mean-roc_auc_score: 0.6061
209
+ 2025-09-23 03:59:57,508 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.1242 | Val mean-roc_auc_score: 0.6082
210
+ 2025-09-23 04:00:01,915 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.1241 | Val mean-roc_auc_score: 0.6042
211
+ 2025-09-23 04:00:05,790 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.1232 | Val mean-roc_auc_score: 0.6074
212
+ 2025-09-23 04:00:09,766 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.1172 | Val mean-roc_auc_score: 0.6061
213
+ 2025-09-23 04:00:13,704 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.1179 | Val mean-roc_auc_score: 0.6041
214
+ 2025-09-23 04:00:17,585 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.1161 | Val mean-roc_auc_score: 0.6062
215
+ 2025-09-23 04:00:21,845 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.1156 | Val mean-roc_auc_score: 0.6067
216
+ 2025-09-23 04:00:25,769 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.1152 | Val mean-roc_auc_score: 0.6097
217
+ 2025-09-23 04:00:29,677 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.1152 | Val mean-roc_auc_score: 0.6100
218
+ 2025-09-23 04:00:33,617 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.1150 | Val mean-roc_auc_score: 0.6081
219
+ 2025-09-23 04:00:37,522 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.1112 | Val mean-roc_auc_score: 0.6045
220
+ 2025-09-23 04:00:41,713 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.1121 | Val mean-roc_auc_score: 0.6032
221
+ 2025-09-23 04:00:45,521 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.1099 | Val mean-roc_auc_score: 0.6081
222
+ 2025-09-23 04:00:49,360 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.1085 | Val mean-roc_auc_score: 0.6062
223
+ 2025-09-23 04:00:53,168 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.1089 | Val mean-roc_auc_score: 0.6060
224
+ 2025-09-23 04:00:57,005 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.1071 | Val mean-roc_auc_score: 0.6066
225
+ 2025-09-23 04:01:01,223 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.1067 | Val mean-roc_auc_score: 0.6027
226
+ 2025-09-23 04:01:05,120 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.1039 | Val mean-roc_auc_score: 0.5987
227
+ 2025-09-23 04:01:08,939 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.1045 | Val mean-roc_auc_score: 0.6016
228
+ 2025-09-23 04:01:12,740 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.1036 | Val mean-roc_auc_score: 0.6060
229
+ 2025-09-23 04:01:17,763 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.1047 | Val mean-roc_auc_score: 0.6017
230
+ 2025-09-23 04:01:21,965 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.1027 | Val mean-roc_auc_score: 0.6003
231
+ 2025-09-23 04:01:25,837 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.1036 | Val mean-roc_auc_score: 0.6041
232
+ 2025-09-23 04:01:29,671 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0990 | Val mean-roc_auc_score: 0.5949
233
+ 2025-09-23 04:01:33,557 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.1018 | Val mean-roc_auc_score: 0.6021
234
+ 2025-09-23 04:01:37,389 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.1018 | Val mean-roc_auc_score: 0.6019
235
+ 2025-09-23 04:01:41,618 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.1000 | Val mean-roc_auc_score: 0.6020
236
+ 2025-09-23 04:01:45,480 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.1000 | Val mean-roc_auc_score: 0.6085
237
+ 2025-09-23 04:01:49,328 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0987 | Val mean-roc_auc_score: 0.6063
238
+ 2025-09-23 04:01:53,144 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0994 | Val mean-roc_auc_score: 0.6049
239
+ 2025-09-23 04:01:56,984 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0978 | Val mean-roc_auc_score: 0.6037
240
+ 2025-09-23 04:02:01,208 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0969 | Val mean-roc_auc_score: 0.5985
241
+ 2025-09-23 04:02:05,039 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0948 | Val mean-roc_auc_score: 0.6014
242
+ 2025-09-23 04:02:08,833 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0969 | Val mean-roc_auc_score: 0.5984
243
+ 2025-09-23 04:02:12,624 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0942 | Val mean-roc_auc_score: 0.6013
244
+ 2025-09-23 04:02:13,267 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.6638
245
+ 2025-09-23 04:02:13,687 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset sider at 2025-09-23_04-02-13
246
+ 2025-09-23 04:02:16,993 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5786 | Val mean-roc_auc_score: 0.5551
247
+ 2025-09-23 04:02:16,993 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 35
248
+ 2025-09-23 04:02:17,506 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.5551
249
+ 2025-09-23 04:02:21,352 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.5107 | Val mean-roc_auc_score: 0.5629
250
+ 2025-09-23 04:02:21,516 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 70
251
+ 2025-09-23 04:02:22,018 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.5629
252
+ 2025-09-23 04:02:25,881 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.5000 | Val mean-roc_auc_score: 0.5788
253
+ 2025-09-23 04:02:26,054 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 105
254
+ 2025-09-23 04:02:26,579 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.5788
255
+ 2025-09-23 04:02:30,357 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.4857 | Val mean-roc_auc_score: 0.5970
256
+ 2025-09-23 04:02:30,532 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 140
257
+ 2025-09-23 04:02:31,042 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.5970
258
+ 2025-09-23 04:02:34,878 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.4679 | Val mean-roc_auc_score: 0.6126
259
+ 2025-09-23 04:02:35,050 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 175
260
+ 2025-09-23 04:02:35,555 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val mean-roc_auc_score: 0.6126
261
+ 2025-09-23 04:02:39,328 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.4281 | Val mean-roc_auc_score: 0.6203
262
+ 2025-09-23 04:02:39,874 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 210
263
+ 2025-09-23 04:02:40,387 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val mean-roc_auc_score: 0.6203
264
+ 2025-09-23 04:02:44,213 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.4107 | Val mean-roc_auc_score: 0.6324
265
+ 2025-09-23 04:02:44,385 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 245
266
+ 2025-09-23 04:02:44,906 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 7 with val mean-roc_auc_score: 0.6324
267
+ 2025-09-23 04:02:48,725 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.3982 | Val mean-roc_auc_score: 0.6390
268
+ 2025-09-23 04:02:48,899 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Global step of best model: 280
269
+ 2025-09-23 04:02:49,405 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Best model saved at epoch 8 with val mean-roc_auc_score: 0.6390
270
+ 2025-09-23 04:02:53,237 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.3729 | Val mean-roc_auc_score: 0.6214
271
+ 2025-09-23 04:02:57,041 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.3518 | Val mean-roc_auc_score: 0.6193
272
+ 2025-09-23 04:03:00,874 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.3375 | Val mean-roc_auc_score: 0.6272
273
+ 2025-09-23 04:03:05,050 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.3187 | Val mean-roc_auc_score: 0.6344
274
+ 2025-09-23 04:03:08,886 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.3125 | Val mean-roc_auc_score: 0.6260
275
+ 2025-09-23 04:03:12,898 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.3036 | Val mean-roc_auc_score: 0.6130
276
+ 2025-09-23 04:03:16,706 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.2988 | Val mean-roc_auc_score: 0.6239
277
+ 2025-09-23 04:03:20,536 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.2911 | Val mean-roc_auc_score: 0.6103
278
+ 2025-09-23 04:03:24,744 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.2839 | Val mean-roc_auc_score: 0.6200
279
+ 2025-09-23 04:03:28,571 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.2750 | Val mean-roc_auc_score: 0.6204
280
+ 2025-09-23 04:03:32,377 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.2661 | Val mean-roc_auc_score: 0.6141
281
+ 2025-09-23 04:03:36,194 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.2589 | Val mean-roc_auc_score: 0.6206
282
+ 2025-09-23 04:03:39,996 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.2554 | Val mean-roc_auc_score: 0.6164
283
+ 2025-09-23 04:03:44,243 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.2482 | Val mean-roc_auc_score: 0.6116
284
+ 2025-09-23 04:03:48,041 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.2453 | Val mean-roc_auc_score: 0.6157
285
+ 2025-09-23 04:03:51,863 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.2393 | Val mean-roc_auc_score: 0.6156
286
+ 2025-09-23 04:03:55,703 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.2321 | Val mean-roc_auc_score: 0.6084
287
+ 2025-09-23 04:03:59,601 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.2313 | Val mean-roc_auc_score: 0.6131
288
+ 2025-09-23 04:04:03,867 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.2205 | Val mean-roc_auc_score: 0.6242
289
+ 2025-09-23 04:04:07,772 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.2223 | Val mean-roc_auc_score: 0.6272
290
+ 2025-09-23 04:04:12,751 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.2115 | Val mean-roc_auc_score: 0.6196
291
+ 2025-09-23 04:04:16,532 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.2054 | Val mean-roc_auc_score: 0.6208
292
+ 2025-09-23 04:04:20,316 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.2045 | Val mean-roc_auc_score: 0.6065
293
+ 2025-09-23 04:04:24,581 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.2031 | Val mean-roc_auc_score: 0.6245
294
+ 2025-09-23 04:04:28,450 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.1938 | Val mean-roc_auc_score: 0.6198
295
+ 2025-09-23 04:04:32,269 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.1938 | Val mean-roc_auc_score: 0.6098
296
+ 2025-09-23 04:04:36,057 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.1900 | Val mean-roc_auc_score: 0.6150
297
+ 2025-09-23 04:04:39,825 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.1848 | Val mean-roc_auc_score: 0.6132
298
+ 2025-09-23 04:04:44,028 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.1839 | Val mean-roc_auc_score: 0.6111
299
+ 2025-09-23 04:04:48,002 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.1771 | Val mean-roc_auc_score: 0.6165
300
+ 2025-09-23 04:04:51,813 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.1768 | Val mean-roc_auc_score: 0.6121
301
+ 2025-09-23 04:04:55,672 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.1759 | Val mean-roc_auc_score: 0.6208
302
+ 2025-09-23 04:04:59,507 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.1723 | Val mean-roc_auc_score: 0.6231
303
+ 2025-09-23 04:05:03,796 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.1696 | Val mean-roc_auc_score: 0.6105
304
+ 2025-09-23 04:05:07,600 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.1594 | Val mean-roc_auc_score: 0.6129
305
+ 2025-09-23 04:05:11,391 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.1634 | Val mean-roc_auc_score: 0.6166
306
+ 2025-09-23 04:05:15,205 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.1616 | Val mean-roc_auc_score: 0.6206
307
+ 2025-09-23 04:05:19,045 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.1562 | Val mean-roc_auc_score: 0.6143
308
+ 2025-09-23 04:05:23,222 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.1562 | Val mean-roc_auc_score: 0.6201
309
+ 2025-09-23 04:05:27,103 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.1536 | Val mean-roc_auc_score: 0.6146
310
+ 2025-09-23 04:05:30,943 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.1594 | Val mean-roc_auc_score: 0.6171
311
+ 2025-09-23 04:05:34,760 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.1500 | Val mean-roc_auc_score: 0.6219
312
+ 2025-09-23 04:05:38,591 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.1446 | Val mean-roc_auc_score: 0.6153
313
+ 2025-09-23 04:05:42,838 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.1516 | Val mean-roc_auc_score: 0.6114
314
+ 2025-09-23 04:05:46,665 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.1437 | Val mean-roc_auc_score: 0.6116
315
+ 2025-09-23 04:05:50,464 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.1455 | Val mean-roc_auc_score: 0.6135
316
+ 2025-09-23 04:05:54,277 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.1419 | Val mean-roc_auc_score: 0.6122
317
+ 2025-09-23 04:05:58,109 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.1402 | Val mean-roc_auc_score: 0.6206
318
+ 2025-09-23 04:06:02,373 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.1384 | Val mean-roc_auc_score: 0.6100
319
+ 2025-09-23 04:06:07,421 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.1375 | Val mean-roc_auc_score: 0.6114
320
+ 2025-09-23 04:06:11,210 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.1375 | Val mean-roc_auc_score: 0.6063
321
+ 2025-09-23 04:06:15,056 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.1339 | Val mean-roc_auc_score: 0.6169
322
+ 2025-09-23 04:06:18,949 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.1313 | Val mean-roc_auc_score: 0.6169
323
+ 2025-09-23 04:06:23,183 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.1295 | Val mean-roc_auc_score: 0.6187
324
+ 2025-09-23 04:06:26,989 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.1250 | Val mean-roc_auc_score: 0.6270
325
+ 2025-09-23 04:06:30,796 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.1277 | Val mean-roc_auc_score: 0.6201
326
+ 2025-09-23 04:06:34,550 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.1277 | Val mean-roc_auc_score: 0.6197
327
+ 2025-09-23 04:06:38,392 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.1266 | Val mean-roc_auc_score: 0.6207
328
+ 2025-09-23 04:06:42,607 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.1232 | Val mean-roc_auc_score: 0.6200
329
+ 2025-09-23 04:06:46,399 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.1232 | Val mean-roc_auc_score: 0.6151
330
+ 2025-09-23 04:06:50,210 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.1245 | Val mean-roc_auc_score: 0.6236
331
+ 2025-09-23 04:06:54,062 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.1205 | Val mean-roc_auc_score: 0.6156
332
+ 2025-09-23 04:06:57,910 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.1196 | Val mean-roc_auc_score: 0.6177
333
+ 2025-09-23 04:07:02,136 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.1219 | Val mean-roc_auc_score: 0.6157
334
+ 2025-09-23 04:07:05,991 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.1187 | Val mean-roc_auc_score: 0.6175
335
+ 2025-09-23 04:07:09,792 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.1170 | Val mean-roc_auc_score: 0.6173
336
+ 2025-09-23 04:07:13,637 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.1169 | Val mean-roc_auc_score: 0.6193
337
+ 2025-09-23 04:07:17,468 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.1129 | Val mean-roc_auc_score: 0.6228
338
+ 2025-09-23 04:07:21,697 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.1161 | Val mean-roc_auc_score: 0.6142
339
+ 2025-09-23 04:07:25,535 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.1135 | Val mean-roc_auc_score: 0.6220
340
+ 2025-09-23 04:07:29,338 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.1116 | Val mean-roc_auc_score: 0.6162
341
+ 2025-09-23 04:07:33,163 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.1121 | Val mean-roc_auc_score: 0.6210
342
+ 2025-09-23 04:07:36,994 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.1116 | Val mean-roc_auc_score: 0.6227
343
+ 2025-09-23 04:07:41,232 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.1094 | Val mean-roc_auc_score: 0.6199
344
+ 2025-09-23 04:07:45,057 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.1133 | Val mean-roc_auc_score: 0.6199
345
+ 2025-09-23 04:07:48,869 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.1071 | Val mean-roc_auc_score: 0.6226
346
+ 2025-09-23 04:07:52,719 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.1080 | Val mean-roc_auc_score: 0.6169
347
+ 2025-09-23 04:07:57,708 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.1062 | Val mean-roc_auc_score: 0.6245
348
+ 2025-09-23 04:08:01,926 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.1054 | Val mean-roc_auc_score: 0.6218
349
+ 2025-09-23 04:08:05,760 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.1054 | Val mean-roc_auc_score: 0.6195
350
+ 2025-09-23 04:08:09,580 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.1062 | Val mean-roc_auc_score: 0.6178
351
+ 2025-09-23 04:08:13,413 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.1031 | Val mean-roc_auc_score: 0.6239
352
+ 2025-09-23 04:08:17,225 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.1027 | Val mean-roc_auc_score: 0.6210
353
+ 2025-09-23 04:08:21,424 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.1031 | Val mean-roc_auc_score: 0.6184
354
+ 2025-09-23 04:08:25,263 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.1027 | Val mean-roc_auc_score: 0.6227
355
+ 2025-09-23 04:08:29,113 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0991 | Val mean-roc_auc_score: 0.6221
356
+ 2025-09-23 04:08:33,031 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.1000 | Val mean-roc_auc_score: 0.6208
357
+ 2025-09-23 04:08:36,848 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0996 | Val mean-roc_auc_score: 0.6187
358
+ 2025-09-23 04:08:41,070 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0996 | Val mean-roc_auc_score: 0.6267
359
+ 2025-09-23 04:08:44,845 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.1000 | Val mean-roc_auc_score: 0.6225
360
+ 2025-09-23 04:08:48,728 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0982 | Val mean-roc_auc_score: 0.6217
361
+ 2025-09-23 04:08:52,518 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.1027 | Val mean-roc_auc_score: 0.6215
362
+ 2025-09-23 04:08:53,151 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.6649
363
+ 2025-09-23 04:08:53,604 - logs_modchembert_sider_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg mean-roc_auc_score: 0.6600, Std Dev: 0.0061
logs_modchembert_classification_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_tox21_epochs100_batch_size32_20250923_023906.log ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 02:39:06,618 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Running benchmark for dataset: tox21
2
+ 2025-09-23 02:39:06,618 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - dataset: tox21, tasks: ['NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase', 'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53'], epochs: 100, learning rate: 3e-05
3
+ 2025-09-23 02:39:06,631 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset tox21 at 2025-09-23_02-39-06
4
+ 2025-09-23 02:39:18,713 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1745 | Val mean-roc_auc_score: 0.7384
5
+ 2025-09-23 02:39:18,713 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 196
6
+ 2025-09-23 02:39:19,229 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.7384
7
+ 2025-09-23 02:39:32,788 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1590 | Val mean-roc_auc_score: 0.7653
8
+ 2025-09-23 02:39:32,962 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 392
9
+ 2025-09-23 02:39:33,493 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.7653
10
+ 2025-09-23 02:39:47,128 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1435 | Val mean-roc_auc_score: 0.7750
11
+ 2025-09-23 02:39:47,304 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 588
12
+ 2025-09-23 02:39:47,818 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.7750
13
+ 2025-09-23 02:40:01,552 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.1347 | Val mean-roc_auc_score: 0.7780
14
+ 2025-09-23 02:40:01,723 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 784
15
+ 2025-09-23 02:40:02,234 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val mean-roc_auc_score: 0.7780
16
+ 2025-09-23 02:40:15,791 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1266 | Val mean-roc_auc_score: 0.7718
17
+ 2025-09-23 02:40:30,524 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1110 | Val mean-roc_auc_score: 0.7722
18
+ 2025-09-23 02:40:44,527 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1024 | Val mean-roc_auc_score: 0.7642
19
+ 2025-09-23 02:40:58,074 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0873 | Val mean-roc_auc_score: 0.7558
20
+ 2025-09-23 02:41:11,562 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0786 | Val mean-roc_auc_score: 0.7576
21
+ 2025-09-23 02:41:25,156 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0677 | Val mean-roc_auc_score: 0.7443
22
+ 2025-09-23 02:41:39,882 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0592 | Val mean-roc_auc_score: 0.7454
23
+ 2025-09-23 02:41:53,906 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0484 | Val mean-roc_auc_score: 0.7423
24
+ 2025-09-23 02:42:07,366 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0426 | Val mean-roc_auc_score: 0.7453
25
+ 2025-09-23 02:42:21,012 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0421 | Val mean-roc_auc_score: 0.7412
26
+ 2025-09-23 02:42:34,708 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0359 | Val mean-roc_auc_score: 0.7397
27
+ 2025-09-23 02:42:49,463 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0302 | Val mean-roc_auc_score: 0.7390
28
+ 2025-09-23 02:43:03,487 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0325 | Val mean-roc_auc_score: 0.7414
29
+ 2025-09-23 02:43:17,095 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0273 | Val mean-roc_auc_score: 0.7354
30
+ 2025-09-23 02:43:30,623 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0269 | Val mean-roc_auc_score: 0.7311
31
+ 2025-09-23 02:43:44,349 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0233 | Val mean-roc_auc_score: 0.7333
32
+ 2025-09-23 02:43:59,080 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0234 | Val mean-roc_auc_score: 0.7368
33
+ 2025-09-23 02:44:12,921 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0208 | Val mean-roc_auc_score: 0.7339
34
+ 2025-09-23 02:44:26,518 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0167 | Val mean-roc_auc_score: 0.7351
35
+ 2025-09-23 02:44:40,164 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0184 | Val mean-roc_auc_score: 0.7364
36
+ 2025-09-23 02:44:53,832 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0171 | Val mean-roc_auc_score: 0.7357
37
+ 2025-09-23 02:45:08,612 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0160 | Val mean-roc_auc_score: 0.7344
38
+ 2025-09-23 02:45:22,480 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0160 | Val mean-roc_auc_score: 0.7330
39
+ 2025-09-23 02:45:36,262 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0154 | Val mean-roc_auc_score: 0.7344
40
+ 2025-09-23 02:45:49,757 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0156 | Val mean-roc_auc_score: 0.7342
41
+ 2025-09-23 02:46:03,333 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0134 | Val mean-roc_auc_score: 0.7331
42
+ 2025-09-23 02:46:18,277 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0139 | Val mean-roc_auc_score: 0.7349
43
+ 2025-09-23 02:46:32,257 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0133 | Val mean-roc_auc_score: 0.7324
44
+ 2025-09-23 02:46:45,788 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0133 | Val mean-roc_auc_score: 0.7308
45
+ 2025-09-23 02:46:59,273 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0129 | Val mean-roc_auc_score: 0.7337
46
+ 2025-09-23 02:47:12,861 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.7317
47
+ 2025-09-23 02:47:27,597 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0116 | Val mean-roc_auc_score: 0.7310
48
+ 2025-09-23 02:47:41,558 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0117 | Val mean-roc_auc_score: 0.7319
49
+ 2025-09-23 02:47:55,081 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0118 | Val mean-roc_auc_score: 0.7320
50
+ 2025-09-23 02:48:08,873 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7309
51
+ 2025-09-23 02:48:22,591 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0104 | Val mean-roc_auc_score: 0.7313
52
+ 2025-09-23 02:48:37,369 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7293
53
+ 2025-09-23 02:48:51,115 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0102 | Val mean-roc_auc_score: 0.7307
54
+ 2025-09-23 02:49:04,721 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0105 | Val mean-roc_auc_score: 0.7299
55
+ 2025-09-23 02:49:18,340 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7303
56
+ 2025-09-23 02:49:31,719 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7312
57
+ 2025-09-23 02:49:46,507 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0106 | Val mean-roc_auc_score: 0.7286
58
+ 2025-09-23 02:50:00,184 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0087 | Val mean-roc_auc_score: 0.7290
59
+ 2025-09-23 02:50:13,802 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0089 | Val mean-roc_auc_score: 0.7272
60
+ 2025-09-23 02:50:27,426 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0117 | Val mean-roc_auc_score: 0.7285
61
+ 2025-09-23 02:50:40,839 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0090 | Val mean-roc_auc_score: 0.7296
62
+ 2025-09-23 02:50:54,269 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7303
63
+ 2025-09-23 02:51:09,206 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7281
64
+ 2025-09-23 02:51:22,839 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0080 | Val mean-roc_auc_score: 0.7287
65
+ 2025-09-23 02:51:36,629 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.7284
66
+ 2025-09-23 02:51:50,192 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.7293
67
+ 2025-09-23 02:52:03,908 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.7282
68
+ 2025-09-23 02:52:19,138 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0085 | Val mean-roc_auc_score: 0.7297
69
+ 2025-09-23 02:52:32,733 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7314
70
+ 2025-09-23 02:52:46,469 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0085 | Val mean-roc_auc_score: 0.7295
71
+ 2025-09-23 02:52:59,964 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7289
72
+ 2025-09-23 02:53:13,449 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0081 | Val mean-roc_auc_score: 0.7298
73
+ 2025-09-23 02:53:28,363 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.7303
74
+ 2025-09-23 02:53:41,855 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0080 | Val mean-roc_auc_score: 0.7285
75
+ 2025-09-23 02:53:55,589 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0080 | Val mean-roc_auc_score: 0.7292
76
+ 2025-09-23 02:54:09,105 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.7289
77
+ 2025-09-23 02:54:22,751 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7287
78
+ 2025-09-23 02:54:37,893 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7286
79
+ 2025-09-23 02:54:51,525 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7286
80
+ 2025-09-23 02:55:05,079 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.7282
81
+ 2025-09-23 02:55:18,604 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7302
82
+ 2025-09-23 02:55:32,445 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7288
83
+ 2025-09-23 02:55:47,523 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7282
84
+ 2025-09-23 02:56:01,438 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7279
85
+ 2025-09-23 02:56:15,080 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0072 | Val mean-roc_auc_score: 0.7292
86
+ 2025-09-23 02:56:28,772 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7281
87
+ 2025-09-23 02:56:42,466 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0071 | Val mean-roc_auc_score: 0.7265
88
+ 2025-09-23 02:56:57,702 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7280
89
+ 2025-09-23 02:57:11,165 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7262
90
+ 2025-09-23 02:57:24,805 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7276
91
+ 2025-09-23 02:57:38,147 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7268
92
+ 2025-09-23 02:57:51,842 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7273
93
+ 2025-09-23 02:58:07,023 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7275
94
+ 2025-09-23 02:58:20,881 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7276
95
+ 2025-09-23 02:58:34,688 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7264
96
+ 2025-09-23 02:58:48,313 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.7273
97
+ 2025-09-23 02:59:02,005 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.7278
98
+ 2025-09-23 02:59:17,113 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7275
99
+ 2025-09-23 02:59:30,599 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7287
100
+ 2025-09-23 02:59:44,443 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7279
101
+ 2025-09-23 02:59:58,021 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7275
102
+ 2025-09-23 03:00:11,767 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7271
103
+ 2025-09-23 03:00:26,980 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.7276
104
+ 2025-09-23 03:00:40,607 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.7277
105
+ 2025-09-23 03:00:54,101 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7278
106
+ 2025-09-23 03:01:07,696 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.7267
107
+ 2025-09-23 03:01:21,445 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0052 | Val mean-roc_auc_score: 0.7264
108
+ 2025-09-23 03:01:36,979 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0055 | Val mean-roc_auc_score: 0.7271
109
+ 2025-09-23 03:01:50,529 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.7265
110
+ 2025-09-23 03:02:04,055 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7276
111
+ 2025-09-23 03:02:17,729 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7282
112
+ 2025-09-23 03:02:18,853 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.7585
113
+ 2025-09-23 03:02:19,241 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset tox21 at 2025-09-23_03-02-19
114
+ 2025-09-23 03:02:31,280 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1784 | Val mean-roc_auc_score: 0.7501
115
+ 2025-09-23 03:02:31,281 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 196
116
+ 2025-09-23 03:02:31,803 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.7501
117
+ 2025-09-23 03:02:45,478 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1603 | Val mean-roc_auc_score: 0.7635
118
+ 2025-09-23 03:02:45,648 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 392
119
+ 2025-09-23 03:02:46,173 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.7635
120
+ 2025-09-23 03:02:59,716 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1456 | Val mean-roc_auc_score: 0.7762
121
+ 2025-09-23 03:02:59,885 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 588
122
+ 2025-09-23 03:03:00,400 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.7762
123
+ 2025-09-23 03:03:14,066 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.1317 | Val mean-roc_auc_score: 0.7665
124
+ 2025-09-23 03:03:27,765 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1273 | Val mean-roc_auc_score: 0.7694
125
+ 2025-09-23 03:03:42,621 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1184 | Val mean-roc_auc_score: 0.7707
126
+ 2025-09-23 03:03:56,636 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1003 | Val mean-roc_auc_score: 0.7478
127
+ 2025-09-23 03:04:10,200 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0869 | Val mean-roc_auc_score: 0.7590
128
+ 2025-09-23 03:04:23,838 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0757 | Val mean-roc_auc_score: 0.7506
129
+ 2025-09-23 03:04:37,555 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0635 | Val mean-roc_auc_score: 0.7497
130
+ 2025-09-23 03:04:52,586 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0605 | Val mean-roc_auc_score: 0.7484
131
+ 2025-09-23 03:05:06,603 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0484 | Val mean-roc_auc_score: 0.7406
132
+ 2025-09-23 03:05:20,316 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0433 | Val mean-roc_auc_score: 0.7402
133
+ 2025-09-23 03:05:34,294 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0421 | Val mean-roc_auc_score: 0.7429
134
+ 2025-09-23 03:05:47,976 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0381 | Val mean-roc_auc_score: 0.7405
135
+ 2025-09-23 03:06:02,742 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0319 | Val mean-roc_auc_score: 0.7366
136
+ 2025-09-23 03:06:16,734 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0298 | Val mean-roc_auc_score: 0.7378
137
+ 2025-09-23 03:06:30,545 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0322 | Val mean-roc_auc_score: 0.7390
138
+ 2025-09-23 03:06:44,162 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0260 | Val mean-roc_auc_score: 0.7365
139
+ 2025-09-23 03:06:57,806 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0239 | Val mean-roc_auc_score: 0.7356
140
+ 2025-09-23 03:07:12,760 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0217 | Val mean-roc_auc_score: 0.7370
141
+ 2025-09-23 03:07:26,634 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0226 | Val mean-roc_auc_score: 0.7340
142
+ 2025-09-23 03:07:40,184 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0197 | Val mean-roc_auc_score: 0.7331
143
+ 2025-09-23 03:07:53,797 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0125 | Val mean-roc_auc_score: 0.7360
144
+ 2025-09-23 03:08:07,302 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0182 | Val mean-roc_auc_score: 0.7342
145
+ 2025-09-23 03:08:21,923 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0177 | Val mean-roc_auc_score: 0.7317
146
+ 2025-09-23 03:08:35,997 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0161 | Val mean-roc_auc_score: 0.7342
147
+ 2025-09-23 03:08:49,696 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0158 | Val mean-roc_auc_score: 0.7352
148
+ 2025-09-23 03:09:03,279 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0150 | Val mean-roc_auc_score: 0.7319
149
+ 2025-09-23 03:09:16,985 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0152 | Val mean-roc_auc_score: 0.7342
150
+ 2025-09-23 03:09:31,793 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0147 | Val mean-roc_auc_score: 0.7356
151
+ 2025-09-23 03:09:45,752 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0125 | Val mean-roc_auc_score: 0.7374
152
+ 2025-09-23 03:09:59,432 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0133 | Val mean-roc_auc_score: 0.7336
153
+ 2025-09-23 03:10:12,911 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0132 | Val mean-roc_auc_score: 0.7329
154
+ 2025-09-23 03:10:26,352 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.7330
155
+ 2025-09-23 03:10:41,237 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.7337
156
+ 2025-09-23 03:10:55,066 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0123 | Val mean-roc_auc_score: 0.7330
157
+ 2025-09-23 03:11:08,490 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.7334
158
+ 2025-09-23 03:11:21,992 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0126 | Val mean-roc_auc_score: 0.7307
159
+ 2025-09-23 03:11:35,486 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0109 | Val mean-roc_auc_score: 0.7289
160
+ 2025-09-23 03:11:50,107 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0125 | Val mean-roc_auc_score: 0.7330
161
+ 2025-09-23 03:12:04,083 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0118 | Val mean-roc_auc_score: 0.7312
162
+ 2025-09-23 03:12:17,663 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0103 | Val mean-roc_auc_score: 0.7317
163
+ 2025-09-23 03:12:31,222 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0112 | Val mean-roc_auc_score: 0.7313
164
+ 2025-09-23 03:12:44,827 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0136 | Val mean-roc_auc_score: 0.7318
165
+ 2025-09-23 03:12:59,519 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0120 | Val mean-roc_auc_score: 0.7301
166
+ 2025-09-23 03:13:13,427 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0087 | Val mean-roc_auc_score: 0.7306
167
+ 2025-09-23 03:13:26,860 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0100 | Val mean-roc_auc_score: 0.7291
168
+ 2025-09-23 03:13:40,545 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0096 | Val mean-roc_auc_score: 0.7295
169
+ 2025-09-23 03:13:53,993 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0090 | Val mean-roc_auc_score: 0.7303
170
+ 2025-09-23 03:14:07,616 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0094 | Val mean-roc_auc_score: 0.7296
171
+ 2025-09-23 03:14:22,613 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0094 | Val mean-roc_auc_score: 0.7289
172
+ 2025-09-23 03:14:36,259 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0091 | Val mean-roc_auc_score: 0.7286
173
+ 2025-09-23 03:14:49,948 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0109 | Val mean-roc_auc_score: 0.7287
174
+ 2025-09-23 03:15:03,652 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7290
175
+ 2025-09-23 03:15:16,991 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.7299
176
+ 2025-09-23 03:15:31,969 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.7303
177
+ 2025-09-23 03:15:45,537 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7296
178
+ 2025-09-23 03:15:59,026 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.7286
179
+ 2025-09-23 03:16:12,639 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7302
180
+ 2025-09-23 03:16:26,176 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7291
181
+ 2025-09-23 03:16:41,181 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.7289
182
+ 2025-09-23 03:16:54,717 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0081 | Val mean-roc_auc_score: 0.7298
183
+ 2025-09-23 03:17:08,272 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0072 | Val mean-roc_auc_score: 0.7305
184
+ 2025-09-23 03:17:21,833 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.7289
185
+ 2025-09-23 03:17:35,388 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0091 | Val mean-roc_auc_score: 0.7301
186
+ 2025-09-23 03:17:50,489 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7278
187
+ 2025-09-23 03:18:04,023 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.7300
188
+ 2025-09-23 03:18:17,411 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0098 | Val mean-roc_auc_score: 0.7288
189
+ 2025-09-23 03:18:31,007 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7288
190
+ 2025-09-23 03:18:44,497 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7280
191
+ 2025-09-23 03:18:59,513 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.7294
192
+ 2025-09-23 03:19:12,940 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7278
193
+ 2025-09-23 03:19:26,419 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0075 | Val mean-roc_auc_score: 0.7291
194
+ 2025-09-23 03:19:39,971 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0075 | Val mean-roc_auc_score: 0.7281
195
+ 2025-09-23 03:19:53,461 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7277
196
+ 2025-09-23 03:20:08,570 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7288
197
+ 2025-09-23 03:20:22,190 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0071 | Val mean-roc_auc_score: 0.7283
198
+ 2025-09-23 03:20:35,720 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.7293
199
+ 2025-09-23 03:20:49,164 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7297
200
+ 2025-09-23 03:21:02,589 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7286
201
+ 2025-09-23 03:21:17,700 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0071 | Val mean-roc_auc_score: 0.7290
202
+ 2025-09-23 03:21:31,263 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7292
203
+ 2025-09-23 03:21:44,755 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0071 | Val mean-roc_auc_score: 0.7293
204
+ 2025-09-23 03:21:58,461 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7291
205
+ 2025-09-23 03:22:12,012 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7289
206
+ 2025-09-23 03:22:27,198 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0060 | Val mean-roc_auc_score: 0.7283
207
+ 2025-09-23 03:22:40,745 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7282
208
+ 2025-09-23 03:22:54,182 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0059 | Val mean-roc_auc_score: 0.7269
209
+ 2025-09-23 03:23:07,695 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7292
210
+ 2025-09-23 03:23:21,076 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0064 | Val mean-roc_auc_score: 0.7281
211
+ 2025-09-23 03:23:36,063 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7296
212
+ 2025-09-23 03:23:49,685 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0057 | Val mean-roc_auc_score: 0.7284
213
+ 2025-09-23 03:24:03,317 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.7293
214
+ 2025-09-23 03:24:16,841 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7292
215
+ 2025-09-23 03:24:30,143 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.7293
216
+ 2025-09-23 03:24:45,179 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7296
217
+ 2025-09-23 03:24:58,804 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.7297
218
+ 2025-09-23 03:25:12,248 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.7291
219
+ 2025-09-23 03:25:25,732 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7294
220
+ 2025-09-23 03:25:26,904 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.7480
221
+ 2025-09-23 03:25:27,310 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset tox21 at 2025-09-23_03-25-27
222
+ 2025-09-23 03:25:39,213 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.1771 | Val mean-roc_auc_score: 0.7470
223
+ 2025-09-23 03:25:39,213 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 196
224
+ 2025-09-23 03:25:39,722 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val mean-roc_auc_score: 0.7470
225
+ 2025-09-23 03:25:53,180 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1549 | Val mean-roc_auc_score: 0.7565
226
+ 2025-09-23 03:25:53,347 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 392
227
+ 2025-09-23 03:25:53,866 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val mean-roc_auc_score: 0.7565
228
+ 2025-09-23 03:26:07,361 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1513 | Val mean-roc_auc_score: 0.7688
229
+ 2025-09-23 03:26:07,531 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Global step of best model: 588
230
+ 2025-09-23 03:26:08,041 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val mean-roc_auc_score: 0.7688
231
+ 2025-09-23 03:26:21,488 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.1287 | Val mean-roc_auc_score: 0.7682
232
+ 2025-09-23 03:26:34,868 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1234 | Val mean-roc_auc_score: 0.7686
233
+ 2025-09-23 03:26:49,835 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1053 | Val mean-roc_auc_score: 0.7548
234
+ 2025-09-23 03:27:03,747 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1003 | Val mean-roc_auc_score: 0.7614
235
+ 2025-09-23 03:27:17,319 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0878 | Val mean-roc_auc_score: 0.7511
236
+ 2025-09-23 03:27:30,999 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0781 | Val mean-roc_auc_score: 0.7427
237
+ 2025-09-23 03:27:44,609 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0656 | Val mean-roc_auc_score: 0.7477
238
+ 2025-09-23 03:27:59,308 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0550 | Val mean-roc_auc_score: 0.7457
239
+ 2025-09-23 03:28:13,321 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0505 | Val mean-roc_auc_score: 0.7423
240
+ 2025-09-23 03:28:26,813 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0462 | Val mean-roc_auc_score: 0.7376
241
+ 2025-09-23 03:28:40,348 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0401 | Val mean-roc_auc_score: 0.7347
242
+ 2025-09-23 03:28:53,761 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0363 | Val mean-roc_auc_score: 0.7391
243
+ 2025-09-23 03:29:08,350 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0304 | Val mean-roc_auc_score: 0.7416
244
+ 2025-09-23 03:29:22,304 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0317 | Val mean-roc_auc_score: 0.7344
245
+ 2025-09-23 03:29:35,873 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0264 | Val mean-roc_auc_score: 0.7332
246
+ 2025-09-23 03:29:49,342 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0295 | Val mean-roc_auc_score: 0.7376
247
+ 2025-09-23 03:30:02,992 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0268 | Val mean-roc_auc_score: 0.7342
248
+ 2025-09-23 03:30:17,770 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0260 | Val mean-roc_auc_score: 0.7347
249
+ 2025-09-23 03:30:31,679 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0259 | Val mean-roc_auc_score: 0.7330
250
+ 2025-09-23 03:30:45,217 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0177 | Val mean-roc_auc_score: 0.7348
251
+ 2025-09-23 03:30:58,682 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0245 | Val mean-roc_auc_score: 0.7343
252
+ 2025-09-23 03:31:12,341 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0177 | Val mean-roc_auc_score: 0.7346
253
+ 2025-09-23 03:31:27,180 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0163 | Val mean-roc_auc_score: 0.7345
254
+ 2025-09-23 03:31:41,166 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0159 | Val mean-roc_auc_score: 0.7322
255
+ 2025-09-23 03:31:54,621 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0153 | Val mean-roc_auc_score: 0.7309
256
+ 2025-09-23 03:32:07,963 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0157 | Val mean-roc_auc_score: 0.7332
257
+ 2025-09-23 03:32:21,472 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0156 | Val mean-roc_auc_score: 0.7340
258
+ 2025-09-23 03:32:36,097 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0137 | Val mean-roc_auc_score: 0.7319
259
+ 2025-09-23 03:32:50,158 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0145 | Val mean-roc_auc_score: 0.7351
260
+ 2025-09-23 03:33:03,448 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0129 | Val mean-roc_auc_score: 0.7338
261
+ 2025-09-23 03:33:16,945 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0134 | Val mean-roc_auc_score: 0.7338
262
+ 2025-09-23 03:33:30,374 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0121 | Val mean-roc_auc_score: 0.7326
263
+ 2025-09-23 03:33:45,158 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0113 | Val mean-roc_auc_score: 0.7312
264
+ 2025-09-23 03:33:59,271 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0125 | Val mean-roc_auc_score: 0.7331
265
+ 2025-09-23 03:34:12,884 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0131 | Val mean-roc_auc_score: 0.7323
266
+ 2025-09-23 03:34:26,480 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0111 | Val mean-roc_auc_score: 0.7311
267
+ 2025-09-23 03:34:39,943 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0101 | Val mean-roc_auc_score: 0.7347
268
+ 2025-09-23 03:34:54,625 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0122 | Val mean-roc_auc_score: 0.7326
269
+ 2025-09-23 03:35:08,495 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0125 | Val mean-roc_auc_score: 0.7302
270
+ 2025-09-23 03:35:22,003 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0128 | Val mean-roc_auc_score: 0.7296
271
+ 2025-09-23 03:35:35,587 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0110 | Val mean-roc_auc_score: 0.7311
272
+ 2025-09-23 03:35:48,892 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0107 | Val mean-roc_auc_score: 0.7316
273
+ 2025-09-23 03:36:03,381 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7333
274
+ 2025-09-23 03:36:17,205 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0112 | Val mean-roc_auc_score: 0.7318
275
+ 2025-09-23 03:36:30,726 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0131 | Val mean-roc_auc_score: 0.7331
276
+ 2025-09-23 03:36:44,289 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7325
277
+ 2025-09-23 03:36:57,883 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0095 | Val mean-roc_auc_score: 0.7310
278
+ 2025-09-23 03:37:11,327 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0091 | Val mean-roc_auc_score: 0.7328
279
+ 2025-09-23 03:37:26,366 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0096 | Val mean-roc_auc_score: 0.7335
280
+ 2025-09-23 03:37:39,917 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0093 | Val mean-roc_auc_score: 0.7326
281
+ 2025-09-23 03:37:53,596 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7304
282
+ 2025-09-23 03:38:07,145 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0086 | Val mean-roc_auc_score: 0.7307
283
+ 2025-09-23 03:38:20,769 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.7290
284
+ 2025-09-23 03:38:36,089 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7305
285
+ 2025-09-23 03:38:49,685 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7313
286
+ 2025-09-23 03:39:03,305 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7295
287
+ 2025-09-23 03:39:16,849 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0090 | Val mean-roc_auc_score: 0.7304
288
+ 2025-09-23 03:39:30,426 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0088 | Val mean-roc_auc_score: 0.7307
289
+ 2025-09-23 03:39:45,530 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0082 | Val mean-roc_auc_score: 0.7292
290
+ 2025-09-23 03:39:59,133 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0095 | Val mean-roc_auc_score: 0.7318
291
+ 2025-09-23 03:40:12,770 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7289
292
+ 2025-09-23 03:40:26,219 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0079 | Val mean-roc_auc_score: 0.7312
293
+ 2025-09-23 03:40:39,879 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0071 | Val mean-roc_auc_score: 0.7306
294
+ 2025-09-23 03:40:55,022 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0084 | Val mean-roc_auc_score: 0.7313
295
+ 2025-09-23 03:41:08,585 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.7294
296
+ 2025-09-23 03:41:22,070 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.7294
297
+ 2025-09-23 03:41:35,623 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0081 | Val mean-roc_auc_score: 0.7308
298
+ 2025-09-23 03:41:49,220 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0077 | Val mean-roc_auc_score: 0.7283
299
+ 2025-09-23 03:42:04,503 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7282
300
+ 2025-09-23 03:42:18,238 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0083 | Val mean-roc_auc_score: 0.7284
301
+ 2025-09-23 03:42:32,008 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0050 | Val mean-roc_auc_score: 0.7292
302
+ 2025-09-23 03:42:45,710 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7293
303
+ 2025-09-23 03:42:59,234 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0072 | Val mean-roc_auc_score: 0.7287
304
+ 2025-09-23 03:43:14,290 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0072 | Val mean-roc_auc_score: 0.7291
305
+ 2025-09-23 03:43:27,762 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7282
306
+ 2025-09-23 03:43:41,341 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0076 | Val mean-roc_auc_score: 0.7293
307
+ 2025-09-23 03:43:54,883 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0074 | Val mean-roc_auc_score: 0.7289
308
+ 2025-09-23 03:44:08,564 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7289
309
+ 2025-09-23 03:44:23,814 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0065 | Val mean-roc_auc_score: 0.7274
310
+ 2025-09-23 03:44:37,110 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7285
311
+ 2025-09-23 03:44:50,764 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0066 | Val mean-roc_auc_score: 0.7287
312
+ 2025-09-23 03:45:04,192 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0068 | Val mean-roc_auc_score: 0.7267
313
+ 2025-09-23 03:45:17,897 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7278
314
+ 2025-09-23 03:45:33,140 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7281
315
+ 2025-09-23 03:45:46,597 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7270
316
+ 2025-09-23 03:46:00,146 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0069 | Val mean-roc_auc_score: 0.7280
317
+ 2025-09-23 03:46:13,839 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7279
318
+ 2025-09-23 03:46:27,372 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0058 | Val mean-roc_auc_score: 0.7267
319
+ 2025-09-23 03:46:42,624 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0056 | Val mean-roc_auc_score: 0.7275
320
+ 2025-09-23 03:46:56,250 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0061 | Val mean-roc_auc_score: 0.7270
321
+ 2025-09-23 03:47:09,906 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0062 | Val mean-roc_auc_score: 0.7270
322
+ 2025-09-23 03:47:23,490 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0067 | Val mean-roc_auc_score: 0.7287
323
+ 2025-09-23 03:47:37,044 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0070 | Val mean-roc_auc_score: 0.7300
324
+ 2025-09-23 03:47:52,446 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0078 | Val mean-roc_auc_score: 0.7281
325
+ 2025-09-23 03:48:05,975 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0054 | Val mean-roc_auc_score: 0.7287
326
+ 2025-09-23 03:48:19,268 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0073 | Val mean-roc_auc_score: 0.7275
327
+ 2025-09-23 03:48:32,818 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0063 | Val mean-roc_auc_score: 0.7290
328
+ 2025-09-23 03:48:33,967 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Test mean-roc_auc_score: 0.7489
329
+ 2025-09-23 03:48:34,407 - logs_modchembert_tox21_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg mean-roc_auc_score: 0.7518, Std Dev: 0.0047
logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_bace_regression_epochs100_batch_size32_20250923_015823.log ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 01:58:23,234 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Running benchmark for dataset: bace_regression
2
+ 2025-09-23 01:58:23,234 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - dataset: bace_regression, tasks: ['pIC50'], epochs: 100, learning rate: 3e-05, transform: True
3
+ 2025-09-23 01:58:23,248 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset bace_regression at 2025-09-23_01-58-23
4
+ 2025-09-23 01:58:29,897 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.6316 | Val rms_score: 0.6965
5
+ 2025-09-23 01:58:29,898 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 38
6
+ 2025-09-23 01:58:30,436 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 0.6965
7
+ 2025-09-23 01:58:35,002 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3158 | Val rms_score: 0.7280
8
+ 2025-09-23 01:58:39,639 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.2600 | Val rms_score: 0.7366
9
+ 2025-09-23 01:58:44,421 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2253 | Val rms_score: 0.7495
10
+ 2025-09-23 01:58:49,430 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.2015 | Val rms_score: 0.6073
11
+ 2025-09-23 01:58:49,635 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 190
12
+ 2025-09-23 01:58:50,214 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 0.6073
13
+ 2025-09-23 01:58:55,025 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1752 | Val rms_score: 0.7702
14
+ 2025-09-23 01:59:00,062 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1620 | Val rms_score: 0.7180
15
+ 2025-09-23 01:59:04,886 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1406 | Val rms_score: 0.6693
16
+ 2025-09-23 01:59:09,780 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1291 | Val rms_score: 0.7082
17
+ 2025-09-23 01:59:14,550 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1242 | Val rms_score: 0.7244
18
+ 2025-09-23 01:59:18,866 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.1241 | Val rms_score: 0.6246
19
+ 2025-09-23 01:59:23,452 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1127 | Val rms_score: 0.7382
20
+ 2025-09-23 01:59:28,185 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1044 | Val rms_score: 0.7621
21
+ 2025-09-23 01:59:32,940 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1104 | Val rms_score: 0.6958
22
+ 2025-09-23 01:59:37,752 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0979 | Val rms_score: 0.7077
23
+ 2025-09-23 01:59:42,521 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0801 | Val rms_score: 0.7214
24
+ 2025-09-23 01:59:47,523 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0851 | Val rms_score: 0.6677
25
+ 2025-09-23 01:59:52,238 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0925 | Val rms_score: 0.7257
26
+ 2025-09-23 01:59:57,037 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0852 | Val rms_score: 0.6979
27
+ 2025-09-23 02:00:01,762 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0839 | Val rms_score: 0.7614
28
+ 2025-09-23 02:00:06,603 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0835 | Val rms_score: 0.6844
29
+ 2025-09-23 02:00:11,587 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0768 | Val rms_score: 0.7044
30
+ 2025-09-23 02:00:16,348 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0678 | Val rms_score: 0.8322
31
+ 2025-09-23 02:00:21,147 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0768 | Val rms_score: 0.7278
32
+ 2025-09-23 02:00:25,743 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0678 | Val rms_score: 0.7591
33
+ 2025-09-23 02:00:30,324 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0621 | Val rms_score: 0.7180
34
+ 2025-09-23 02:00:36,151 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0667 | Val rms_score: 0.8134
35
+ 2025-09-23 02:00:40,687 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0703 | Val rms_score: 0.7505
36
+ 2025-09-23 02:00:44,874 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0791 | Val rms_score: 0.7547
37
+ 2025-09-23 02:00:49,456 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0662 | Val rms_score: 0.7829
38
+ 2025-09-23 02:00:54,226 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0604 | Val rms_score: 0.7187
39
+ 2025-09-23 02:00:59,326 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0571 | Val rms_score: 0.7406
40
+ 2025-09-23 02:01:04,207 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0530 | Val rms_score: 0.7120
41
+ 2025-09-23 02:01:09,038 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0584 | Val rms_score: 0.7346
42
+ 2025-09-23 02:01:13,803 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0526 | Val rms_score: 0.7254
43
+ 2025-09-23 02:01:18,717 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0510 | Val rms_score: 0.7710
44
+ 2025-09-23 02:01:23,802 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0465 | Val rms_score: 0.7615
45
+ 2025-09-23 02:01:28,587 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0500 | Val rms_score: 0.7421
46
+ 2025-09-23 02:01:33,448 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0493 | Val rms_score: 0.7433
47
+ 2025-09-23 02:01:38,159 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0484 | Val rms_score: 0.7817
48
+ 2025-09-23 02:01:42,968 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0463 | Val rms_score: 0.7630
49
+ 2025-09-23 02:01:48,196 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0440 | Val rms_score: 0.7882
50
+ 2025-09-23 02:01:53,237 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0437 | Val rms_score: 0.7296
51
+ 2025-09-23 02:01:57,909 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0438 | Val rms_score: 0.7546
52
+ 2025-09-23 02:02:02,998 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0463 | Val rms_score: 0.7492
53
+ 2025-09-23 02:02:07,229 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0399 | Val rms_score: 0.7589
54
+ 2025-09-23 02:02:11,785 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0401 | Val rms_score: 0.7474
55
+ 2025-09-23 02:02:16,773 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0368 | Val rms_score: 0.7733
56
+ 2025-09-23 02:02:21,751 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0391 | Val rms_score: 0.7681
57
+ 2025-09-23 02:02:26,731 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0403 | Val rms_score: 0.7934
58
+ 2025-09-23 02:02:31,741 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0387 | Val rms_score: 0.7378
59
+ 2025-09-23 02:02:37,031 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0387 | Val rms_score: 0.7833
60
+ 2025-09-23 02:02:43,112 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0416 | Val rms_score: 0.8024
61
+ 2025-09-23 02:02:48,195 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0419 | Val rms_score: 0.7901
62
+ 2025-09-23 02:02:53,264 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0341 | Val rms_score: 0.7888
63
+ 2025-09-23 02:02:58,414 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0325 | Val rms_score: 0.7630
64
+ 2025-09-23 02:03:03,726 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0331 | Val rms_score: 0.7636
65
+ 2025-09-23 02:03:08,802 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0255 | Val rms_score: 0.7460
66
+ 2025-09-23 02:03:13,748 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0341 | Val rms_score: 0.7599
67
+ 2025-09-23 02:03:18,694 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0323 | Val rms_score: 0.7549
68
+ 2025-09-23 02:03:23,130 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0328 | Val rms_score: 0.7809
69
+ 2025-09-23 02:03:28,349 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0327 | Val rms_score: 0.8207
70
+ 2025-09-23 02:03:32,785 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0382 | Val rms_score: 0.7759
71
+ 2025-09-23 02:03:37,783 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0310 | Val rms_score: 0.8058
72
+ 2025-09-23 02:03:42,873 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0308 | Val rms_score: 0.7643
73
+ 2025-09-23 02:03:48,034 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0366 | Val rms_score: 0.7679
74
+ 2025-09-23 02:03:53,416 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0282 | Val rms_score: 0.7528
75
+ 2025-09-23 02:03:58,302 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0292 | Val rms_score: 0.7563
76
+ 2025-09-23 02:04:03,249 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0277 | Val rms_score: 0.7650
77
+ 2025-09-23 02:04:08,168 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0273 | Val rms_score: 0.7592
78
+ 2025-09-23 02:04:13,088 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0296 | Val rms_score: 0.7461
79
+ 2025-09-23 02:04:18,478 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0295 | Val rms_score: 0.7328
80
+ 2025-09-23 02:04:23,597 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0273 | Val rms_score: 0.7634
81
+ 2025-09-23 02:04:28,795 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0257 | Val rms_score: 0.7728
82
+ 2025-09-23 02:04:33,903 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0286 | Val rms_score: 0.7630
83
+ 2025-09-23 02:04:38,869 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0265 | Val rms_score: 0.7818
84
+ 2025-09-23 02:04:43,774 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0254 | Val rms_score: 0.7792
85
+ 2025-09-23 02:04:48,888 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0273 | Val rms_score: 0.7553
86
+ 2025-09-23 02:04:54,823 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0193 | Val rms_score: 0.7592
87
+ 2025-09-23 02:04:59,414 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0250 | Val rms_score: 0.7675
88
+ 2025-09-23 02:05:04,609 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0260 | Val rms_score: 0.7668
89
+ 2025-09-23 02:05:10,051 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0265 | Val rms_score: 0.7541
90
+ 2025-09-23 02:05:15,009 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0247 | Val rms_score: 0.7652
91
+ 2025-09-23 02:05:20,177 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0259 | Val rms_score: 0.7421
92
+ 2025-09-23 02:05:25,414 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0270 | Val rms_score: 0.7691
93
+ 2025-09-23 02:05:30,531 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0246 | Val rms_score: 0.7926
94
+ 2025-09-23 02:05:36,027 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0293 | Val rms_score: 0.7929
95
+ 2025-09-23 02:05:41,227 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0252 | Val rms_score: 0.7510
96
+ 2025-09-23 02:05:46,404 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0251 | Val rms_score: 0.7937
97
+ 2025-09-23 02:05:51,451 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0262 | Val rms_score: 0.7946
98
+ 2025-09-23 02:05:56,652 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0243 | Val rms_score: 0.7739
99
+ 2025-09-23 02:06:01,883 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0246 | Val rms_score: 0.7752
100
+ 2025-09-23 02:06:06,560 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0209 | Val rms_score: 0.7796
101
+ 2025-09-23 02:06:11,588 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0218 | Val rms_score: 0.7562
102
+ 2025-09-23 02:06:16,642 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0229 | Val rms_score: 0.7802
103
+ 2025-09-23 02:06:21,027 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0208 | Val rms_score: 0.7737
104
+ 2025-09-23 02:06:25,891 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0222 | Val rms_score: 0.7891
105
+ 2025-09-23 02:06:31,077 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0223 | Val rms_score: 0.7544
106
+ 2025-09-23 02:06:36,218 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0213 | Val rms_score: 0.7928
107
+ 2025-09-23 02:06:41,376 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0212 | Val rms_score: 0.7744
108
+ 2025-09-23 02:06:41,900 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Test rms_score: 0.9526
109
+ 2025-09-23 02:06:42,218 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset bace_regression at 2025-09-23_02-06-42
110
+ 2025-09-23 02:06:47,193 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.6151 | Val rms_score: 0.7748
111
+ 2025-09-23 02:06:47,193 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 38
112
+ 2025-09-23 02:06:47,728 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 0.7748
113
+ 2025-09-23 02:06:52,911 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3322 | Val rms_score: 0.7296
114
+ 2025-09-23 02:06:53,095 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 76
115
+ 2025-09-23 02:06:53,621 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 0.7296
116
+ 2025-09-23 02:06:58,929 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.2388 | Val rms_score: 0.6580
117
+ 2025-09-23 02:06:59,108 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 114
118
+ 2025-09-23 02:06:59,656 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 0.6580
119
+ 2025-09-23 02:07:04,775 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2188 | Val rms_score: 0.8624
120
+ 2025-09-23 02:07:10,067 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1933 | Val rms_score: 0.7167
121
+ 2025-09-23 02:07:15,210 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1708 | Val rms_score: 0.7656
122
+ 2025-09-23 02:07:20,711 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1669 | Val rms_score: 0.7156
123
+ 2025-09-23 02:07:25,822 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1543 | Val rms_score: 0.7894
124
+ 2025-09-23 02:07:30,362 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1324 | Val rms_score: 0.8148
125
+ 2025-09-23 02:07:35,358 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1242 | Val rms_score: 0.7301
126
+ 2025-09-23 02:07:40,297 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.1215 | Val rms_score: 0.7412
127
+ 2025-09-23 02:07:44,916 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1184 | Val rms_score: 0.6765
128
+ 2025-09-23 02:07:49,700 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1135 | Val rms_score: 0.8050
129
+ 2025-09-23 02:07:54,895 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1270 | Val rms_score: 0.6949
130
+ 2025-09-23 02:08:00,045 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0991 | Val rms_score: 0.7169
131
+ 2025-09-23 02:08:05,244 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.1226 | Val rms_score: 0.7729
132
+ 2025-09-23 02:08:10,515 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0954 | Val rms_score: 0.7536
133
+ 2025-09-23 02:08:15,577 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0942 | Val rms_score: 0.8126
134
+ 2025-09-23 02:08:20,654 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0959 | Val rms_score: 0.7223
135
+ 2025-09-23 02:08:25,747 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0835 | Val rms_score: 0.7430
136
+ 2025-09-23 02:08:31,170 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0818 | Val rms_score: 0.6814
137
+ 2025-09-23 02:08:36,685 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0755 | Val rms_score: 0.6853
138
+ 2025-09-23 02:08:41,848 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0715 | Val rms_score: 0.7655
139
+ 2025-09-23 02:08:47,133 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0716 | Val rms_score: 0.7362
140
+ 2025-09-23 02:08:51,749 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0691 | Val rms_score: 0.7300
141
+ 2025-09-23 02:08:56,888 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0637 | Val rms_score: 0.7648
142
+ 2025-09-23 02:09:03,277 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0622 | Val rms_score: 0.7118
143
+ 2025-09-23 02:09:08,072 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0633 | Val rms_score: 0.7343
144
+ 2025-09-23 02:09:12,730 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0605 | Val rms_score: 0.7650
145
+ 2025-09-23 02:09:17,691 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0588 | Val rms_score: 0.7864
146
+ 2025-09-23 02:09:22,832 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0621 | Val rms_score: 0.7872
147
+ 2025-09-23 02:09:28,321 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0605 | Val rms_score: 0.7598
148
+ 2025-09-23 02:09:33,334 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0543 | Val rms_score: 0.7577
149
+ 2025-09-23 02:09:38,642 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0563 | Val rms_score: 0.7271
150
+ 2025-09-23 02:09:43,959 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0549 | Val rms_score: 0.7575
151
+ 2025-09-23 02:09:49,203 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0526 | Val rms_score: 0.7809
152
+ 2025-09-23 02:09:54,683 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0544 | Val rms_score: 0.7727
153
+ 2025-09-23 02:09:59,875 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0506 | Val rms_score: 0.7984
154
+ 2025-09-23 02:10:05,207 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0512 | Val rms_score: 0.8001
155
+ 2025-09-23 02:10:10,405 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0523 | Val rms_score: 0.7650
156
+ 2025-09-23 02:10:15,221 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0547 | Val rms_score: 0.7800
157
+ 2025-09-23 02:10:20,567 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0485 | Val rms_score: 0.7750
158
+ 2025-09-23 02:10:25,633 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0531 | Val rms_score: 0.7636
159
+ 2025-09-23 02:10:30,694 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0467 | Val rms_score: 0.7748
160
+ 2025-09-23 02:10:35,102 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0443 | Val rms_score: 0.7737
161
+ 2025-09-23 02:10:39,662 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0391 | Val rms_score: 0.7596
162
+ 2025-09-23 02:10:45,066 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0391 | Val rms_score: 0.7675
163
+ 2025-09-23 02:10:50,218 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0396 | Val rms_score: 0.8023
164
+ 2025-09-23 02:10:55,393 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0411 | Val rms_score: 0.7922
165
+ 2025-09-23 02:11:00,510 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0430 | Val rms_score: 0.7660
166
+ 2025-09-23 02:11:05,846 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0352 | Val rms_score: 0.7833
167
+ 2025-09-23 02:11:11,362 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0374 | Val rms_score: 0.7772
168
+ 2025-09-23 02:11:17,572 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0399 | Val rms_score: 0.7933
169
+ 2025-09-23 02:11:22,909 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0366 | Val rms_score: 0.7722
170
+ 2025-09-23 02:11:28,238 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0387 | Val rms_score: 0.7883
171
+ 2025-09-23 02:11:33,465 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0371 | Val rms_score: 0.7978
172
+ 2025-09-23 02:11:38,344 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0308 | Val rms_score: 0.7602
173
+ 2025-09-23 02:11:43,335 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0437 | Val rms_score: 0.7594
174
+ 2025-09-23 02:11:48,444 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0350 | Val rms_score: 0.7635
175
+ 2025-09-23 02:11:53,397 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0319 | Val rms_score: 0.7999
176
+ 2025-09-23 02:11:58,364 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0297 | Val rms_score: 0.7606
177
+ 2025-09-23 02:12:03,274 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0310 | Val rms_score: 0.7928
178
+ 2025-09-23 02:12:08,414 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0310 | Val rms_score: 0.7850
179
+ 2025-09-23 02:12:13,363 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0317 | Val rms_score: 0.7844
180
+ 2025-09-23 02:12:18,301 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0294 | Val rms_score: 0.8112
181
+ 2025-09-23 02:12:23,312 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0322 | Val rms_score: 0.7525
182
+ 2025-09-23 02:12:28,862 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0292 | Val rms_score: 0.7851
183
+ 2025-09-23 02:12:34,055 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0292 | Val rms_score: 0.7913
184
+ 2025-09-23 02:12:39,237 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0323 | Val rms_score: 0.7490
185
+ 2025-09-23 02:12:44,424 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0304 | Val rms_score: 0.7838
186
+ 2025-09-23 02:12:49,634 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0292 | Val rms_score: 0.7656
187
+ 2025-09-23 02:12:54,906 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0312 | Val rms_score: 0.7731
188
+ 2025-09-23 02:12:59,973 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0306 | Val rms_score: 0.7709
189
+ 2025-09-23 02:13:05,092 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0306 | Val rms_score: 0.7739
190
+ 2025-09-23 02:13:10,294 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0292 | Val rms_score: 0.7899
191
+ 2025-09-23 02:13:15,605 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0275 | Val rms_score: 0.8170
192
+ 2025-09-23 02:13:21,247 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0269 | Val rms_score: 0.7889
193
+ 2025-09-23 02:13:25,807 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0262 | Val rms_score: 0.7830
194
+ 2025-09-23 02:13:31,284 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0240 | Val rms_score: 0.7989
195
+ 2025-09-23 02:13:36,406 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0265 | Val rms_score: 0.7489
196
+ 2025-09-23 02:13:41,348 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0260 | Val rms_score: 0.7671
197
+ 2025-09-23 02:13:46,788 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0265 | Val rms_score: 0.7811
198
+ 2025-09-23 02:13:52,041 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0251 | Val rms_score: 0.7606
199
+ 2025-09-23 02:13:57,325 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0265 | Val rms_score: 0.7887
200
+ 2025-09-23 02:14:02,744 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0250 | Val rms_score: 0.7867
201
+ 2025-09-23 02:14:08,013 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0262 | Val rms_score: 0.7870
202
+ 2025-09-23 02:14:13,568 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0195 | Val rms_score: 0.7880
203
+ 2025-09-23 02:14:18,833 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0250 | Val rms_score: 0.7727
204
+ 2025-09-23 02:14:24,070 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0235 | Val rms_score: 0.7836
205
+ 2025-09-23 02:14:29,333 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0249 | Val rms_score: 0.7855
206
+ 2025-09-23 02:14:34,319 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0255 | Val rms_score: 0.7934
207
+ 2025-09-23 02:14:39,751 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0263 | Val rms_score: 0.7471
208
+ 2025-09-23 02:14:45,080 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0222 | Val rms_score: 0.7665
209
+ 2025-09-23 02:14:50,314 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0231 | Val rms_score: 0.7818
210
+ 2025-09-23 02:14:55,032 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0217 | Val rms_score: 0.7846
211
+ 2025-09-23 02:15:00,312 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0224 | Val rms_score: 0.8143
212
+ 2025-09-23 02:15:05,897 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0232 | Val rms_score: 0.8023
213
+ 2025-09-23 02:15:11,053 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0220 | Val rms_score: 0.7827
214
+ 2025-09-23 02:15:16,299 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0220 | Val rms_score: 0.7737
215
+ 2025-09-23 02:15:21,603 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0221 | Val rms_score: 0.7661
216
+ 2025-09-23 02:15:22,177 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Test rms_score: 1.0015
217
+ 2025-09-23 02:15:22,497 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset bace_regression at 2025-09-23_02-15-22
218
+ 2025-09-23 02:15:27,491 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5954 | Val rms_score: 0.7332
219
+ 2025-09-23 02:15:27,491 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 38
220
+ 2025-09-23 02:15:28,012 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 0.7332
221
+ 2025-09-23 02:15:33,185 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3125 | Val rms_score: 0.6718
222
+ 2025-09-23 02:15:33,364 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 76
223
+ 2025-09-23 02:15:33,885 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 0.6718
224
+ 2025-09-23 02:15:39,127 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.2690 | Val rms_score: 0.7359
225
+ 2025-09-23 02:15:44,343 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2237 | Val rms_score: 0.8022
226
+ 2025-09-23 02:15:49,060 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1990 | Val rms_score: 0.7298
227
+ 2025-09-23 02:15:54,230 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1897 | Val rms_score: 0.6662
228
+ 2025-09-23 02:15:54,616 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Global step of best model: 228
229
+ 2025-09-23 02:15:55,142 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val rms_score: 0.6662
230
+ 2025-09-23 02:16:00,247 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1637 | Val rms_score: 0.7217
231
+ 2025-09-23 02:16:05,242 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1719 | Val rms_score: 0.8103
232
+ 2025-09-23 02:16:10,369 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1390 | Val rms_score: 0.6988
233
+ 2025-09-23 02:16:15,267 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1242 | Val rms_score: 0.7426
234
+ 2025-09-23 02:16:19,990 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.1207 | Val rms_score: 0.7129
235
+ 2025-09-23 02:16:25,468 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1135 | Val rms_score: 0.7405
236
+ 2025-09-23 02:16:30,715 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1143 | Val rms_score: 0.7612
237
+ 2025-09-23 02:16:36,119 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1006 | Val rms_score: 0.8830
238
+ 2025-09-23 02:16:41,459 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0979 | Val rms_score: 0.8090
239
+ 2025-09-23 02:16:46,505 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.1177 | Val rms_score: 0.7594
240
+ 2025-09-23 02:16:51,817 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0872 | Val rms_score: 0.7871
241
+ 2025-09-23 02:16:56,813 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0958 | Val rms_score: 0.7683
242
+ 2025-09-23 02:17:01,854 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0856 | Val rms_score: 0.6903
243
+ 2025-09-23 02:17:07,080 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0806 | Val rms_score: 0.7164
244
+ 2025-09-23 02:17:11,834 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0880 | Val rms_score: 0.7256
245
+ 2025-09-23 02:17:17,266 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0777 | Val rms_score: 0.7641
246
+ 2025-09-23 02:17:22,562 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0748 | Val rms_score: 0.7134
247
+ 2025-09-23 02:17:27,821 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0814 | Val rms_score: 0.7168
248
+ 2025-09-23 02:17:32,978 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0744 | Val rms_score: 0.7543
249
+ 2025-09-23 02:17:38,286 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0699 | Val rms_score: 0.7601
250
+ 2025-09-23 02:17:44,407 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0655 | Val rms_score: 0.7358
251
+ 2025-09-23 02:17:49,184 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0592 | Val rms_score: 0.7545
252
+ 2025-09-23 02:17:54,407 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0938 | Val rms_score: 0.7738
253
+ 2025-09-23 02:17:59,756 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0588 | Val rms_score: 0.7460
254
+ 2025-09-23 02:18:04,940 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0588 | Val rms_score: 0.7506
255
+ 2025-09-23 02:18:10,190 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0554 | Val rms_score: 0.7685
256
+ 2025-09-23 02:18:15,227 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0539 | Val rms_score: 0.7387
257
+ 2025-09-23 02:18:20,348 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0502 | Val rms_score: 0.7397
258
+ 2025-09-23 02:18:25,471 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0518 | Val rms_score: 0.7469
259
+ 2025-09-23 02:18:30,692 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0504 | Val rms_score: 0.8029
260
+ 2025-09-23 02:18:35,618 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0498 | Val rms_score: 0.7560
261
+ 2025-09-23 02:18:40,931 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0477 | Val rms_score: 0.7898
262
+ 2025-09-23 02:18:46,124 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0456 | Val rms_score: 0.7535
263
+ 2025-09-23 02:18:51,432 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0508 | Val rms_score: 0.7581
264
+ 2025-09-23 02:18:56,694 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0526 | Val rms_score: 0.7642
265
+ 2025-09-23 02:19:02,289 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0444 | Val rms_score: 0.7455
266
+ 2025-09-23 02:19:07,220 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0460 | Val rms_score: 0.7674
267
+ 2025-09-23 02:19:11,835 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0444 | Val rms_score: 0.7597
268
+ 2025-09-23 02:19:16,957 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0410 | Val rms_score: 0.7973
269
+ 2025-09-23 02:19:21,762 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0421 | Val rms_score: 0.7532
270
+ 2025-09-23 02:19:27,056 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0409 | Val rms_score: 0.7578
271
+ 2025-09-23 02:19:32,182 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0439 | Val rms_score: 0.7522
272
+ 2025-09-23 02:19:37,491 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0393 | Val rms_score: 0.7685
273
+ 2025-09-23 02:19:42,767 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0417 | Val rms_score: 0.7476
274
+ 2025-09-23 02:19:47,994 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0387 | Val rms_score: 0.7838
275
+ 2025-09-23 02:19:53,667 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0387 | Val rms_score: 0.7634
276
+ 2025-09-23 02:19:59,817 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0356 | Val rms_score: 0.7674
277
+ 2025-09-23 02:20:05,154 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0370 | Val rms_score: 0.7890
278
+ 2025-09-23 02:20:10,499 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0360 | Val rms_score: 0.7635
279
+ 2025-09-23 02:20:15,661 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0354 | Val rms_score: 0.7899
280
+ 2025-09-23 02:20:21,166 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0347 | Val rms_score: 0.7709
281
+ 2025-09-23 02:20:26,324 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0304 | Val rms_score: 0.7466
282
+ 2025-09-23 02:20:31,426 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0358 | Val rms_score: 0.7750
283
+ 2025-09-23 02:20:35,968 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0333 | Val rms_score: 0.7611
284
+ 2025-09-23 02:20:40,595 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0308 | Val rms_score: 0.7920
285
+ 2025-09-23 02:20:45,871 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0312 | Val rms_score: 0.7661
286
+ 2025-09-23 02:20:51,009 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0312 | Val rms_score: 0.7705
287
+ 2025-09-23 02:20:56,110 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0297 | Val rms_score: 0.7901
288
+ 2025-09-23 02:21:01,237 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0310 | Val rms_score: 0.7865
289
+ 2025-09-23 02:21:06,624 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0344 | Val rms_score: 0.8015
290
+ 2025-09-23 02:21:12,012 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0288 | Val rms_score: 0.7960
291
+ 2025-09-23 02:21:17,134 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0286 | Val rms_score: 0.7993
292
+ 2025-09-23 02:21:22,091 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0275 | Val rms_score: 0.7919
293
+ 2025-09-23 02:21:27,368 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0273 | Val rms_score: 0.7919
294
+ 2025-09-23 02:21:32,742 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0284 | Val rms_score: 0.8096
295
+ 2025-09-23 02:21:38,368 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0271 | Val rms_score: 0.7791
296
+ 2025-09-23 02:21:43,663 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0273 | Val rms_score: 0.7753
297
+ 2025-09-23 02:21:48,895 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0273 | Val rms_score: 0.7764
298
+ 2025-09-23 02:21:54,051 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0282 | Val rms_score: 0.7852
299
+ 2025-09-23 02:21:59,172 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0269 | Val rms_score: 0.7452
300
+ 2025-09-23 02:22:04,118 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0264 | Val rms_score: 0.7684
301
+ 2025-09-23 02:22:09,467 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0275 | Val rms_score: 0.7957
302
+ 2025-09-23 02:22:15,519 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0474 | Val rms_score: 0.7602
303
+ 2025-09-23 02:22:20,818 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0271 | Val rms_score: 0.7938
304
+ 2025-09-23 02:22:26,070 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0248 | Val rms_score: 0.7667
305
+ 2025-09-23 02:22:31,444 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0242 | Val rms_score: 0.8077
306
+ 2025-09-23 02:22:36,630 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0242 | Val rms_score: 0.7982
307
+ 2025-09-23 02:22:41,942 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0244 | Val rms_score: 0.7737
308
+ 2025-09-23 02:22:47,099 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0262 | Val rms_score: 0.7796
309
+ 2025-09-23 02:22:52,286 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0244 | Val rms_score: 0.7624
310
+ 2025-09-23 02:22:57,806 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0301 | Val rms_score: 0.7912
311
+ 2025-09-23 02:23:03,092 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0236 | Val rms_score: 0.7841
312
+ 2025-09-23 02:23:08,130 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0265 | Val rms_score: 0.7807
313
+ 2025-09-23 02:23:13,269 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0240 | Val rms_score: 0.7792
314
+ 2025-09-23 02:23:18,350 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0228 | Val rms_score: 0.7918
315
+ 2025-09-23 02:23:23,574 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0217 | Val rms_score: 0.7888
316
+ 2025-09-23 02:23:27,922 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0217 | Val rms_score: 0.7734
317
+ 2025-09-23 02:23:32,707 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0220 | Val rms_score: 0.7749
318
+ 2025-09-23 02:23:37,774 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0175 | Val rms_score: 0.7766
319
+ 2025-09-23 02:23:42,861 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0228 | Val rms_score: 0.7671
320
+ 2025-09-23 02:23:48,214 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0223 | Val rms_score: 0.7731
321
+ 2025-09-23 02:23:53,436 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0210 | Val rms_score: 0.7806
322
+ 2025-09-23 02:23:58,794 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0231 | Val rms_score: 0.7873
323
+ 2025-09-23 02:24:04,182 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0226 | Val rms_score: 0.7664
324
+ 2025-09-23 02:24:04,735 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Test rms_score: 0.9453
325
+ 2025-09-23 02:24:05,059 - logs_modchembert_bace_regression_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg rms_score: 0.9665, Std Dev: 0.0250
logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_clearance_epochs100_batch_size32_20250923_022405.log ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 02:24:05,060 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Running benchmark for dataset: clearance
2
+ 2025-09-23 02:24:05,061 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - dataset: clearance, tasks: ['target'], epochs: 100, learning rate: 3e-05, transform: True
3
+ 2025-09-23 02:24:05,065 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset clearance at 2025-09-23_02-24-05
4
+ 2025-09-23 02:24:08,155 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 2.8095 | Val rms_score: 63.9123
5
+ 2025-09-23 02:24:08,155 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 21
6
+ 2025-09-23 02:24:08,703 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 63.9123
7
+ 2025-09-23 02:24:11,624 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 1.2560 | Val rms_score: 53.7175
8
+ 2025-09-23 02:24:11,802 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 42
9
+ 2025-09-23 02:24:12,323 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 53.7175
10
+ 2025-09-23 02:24:15,557 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 1.0238 | Val rms_score: 52.6228
11
+ 2025-09-23 02:24:15,735 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 63
12
+ 2025-09-23 02:24:16,254 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 52.6228
13
+ 2025-09-23 02:24:19,570 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.8810 | Val rms_score: 54.6112
14
+ 2025-09-23 02:24:22,833 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.7125 | Val rms_score: 52.2338
15
+ 2025-09-23 02:24:23,013 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 105
16
+ 2025-09-23 02:24:23,542 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 52.2338
17
+ 2025-09-23 02:24:26,873 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.6518 | Val rms_score: 53.9528
18
+ 2025-09-23 02:24:30,486 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.5774 | Val rms_score: 55.2152
19
+ 2025-09-23 02:24:33,826 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.4940 | Val rms_score: 55.3008
20
+ 2025-09-23 02:24:37,156 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.3810 | Val rms_score: 56.1576
21
+ 2025-09-23 02:24:40,427 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.3219 | Val rms_score: 56.1982
22
+ 2025-09-23 02:24:43,742 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.2307 | Val rms_score: 57.9538
23
+ 2025-09-23 02:24:46,849 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.2054 | Val rms_score: 56.1983
24
+ 2025-09-23 02:24:49,825 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1801 | Val rms_score: 57.0751
25
+ 2025-09-23 02:24:53,089 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1607 | Val rms_score: 55.8194
26
+ 2025-09-23 02:24:56,444 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.1448 | Val rms_score: 55.6718
27
+ 2025-09-23 02:24:59,702 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.1220 | Val rms_score: 55.4480
28
+ 2025-09-23 02:25:03,292 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.1161 | Val rms_score: 55.3476
29
+ 2025-09-23 02:25:06,700 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0997 | Val rms_score: 54.8027
30
+ 2025-09-23 02:25:10,026 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0975 | Val rms_score: 54.4771
31
+ 2025-09-23 02:25:13,330 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0801 | Val rms_score: 54.0486
32
+ 2025-09-23 02:25:16,749 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0885 | Val rms_score: 54.8937
33
+ 2025-09-23 02:25:20,388 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0800 | Val rms_score: 54.4905
34
+ 2025-09-23 02:25:23,757 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0796 | Val rms_score: 54.4460
35
+ 2025-09-23 02:25:26,806 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0762 | Val rms_score: 54.1802
36
+ 2025-09-23 02:25:30,149 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0662 | Val rms_score: 55.4057
37
+ 2025-09-23 02:25:33,472 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0688 | Val rms_score: 54.5638
38
+ 2025-09-23 02:25:37,045 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0692 | Val rms_score: 54.4406
39
+ 2025-09-23 02:25:40,279 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0636 | Val rms_score: 54.3138
40
+ 2025-09-23 02:25:43,598 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0499 | Val rms_score: 54.9272
41
+ 2025-09-23 02:25:46,906 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0573 | Val rms_score: 53.7407
42
+ 2025-09-23 02:25:50,093 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0554 | Val rms_score: 53.1949
43
+ 2025-09-23 02:25:53,638 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0558 | Val rms_score: 54.7758
44
+ 2025-09-23 02:25:56,864 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0565 | Val rms_score: 54.1386
45
+ 2025-09-23 02:26:00,075 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0541 | Val rms_score: 54.9208
46
+ 2025-09-23 02:26:03,320 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0469 | Val rms_score: 54.6620
47
+ 2025-09-23 02:26:06,038 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0484 | Val rms_score: 54.3099
48
+ 2025-09-23 02:26:09,286 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0476 | Val rms_score: 55.1880
49
+ 2025-09-23 02:26:12,589 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0456 | Val rms_score: 54.9342
50
+ 2025-09-23 02:26:15,903 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0446 | Val rms_score: 54.3387
51
+ 2025-09-23 02:26:19,098 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0456 | Val rms_score: 54.3482
52
+ 2025-09-23 02:26:22,369 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0480 | Val rms_score: 54.5293
53
+ 2025-09-23 02:26:26,003 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0510 | Val rms_score: 54.5853
54
+ 2025-09-23 02:26:29,307 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0355 | Val rms_score: 55.4028
55
+ 2025-09-23 02:26:32,650 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0413 | Val rms_score: 55.0123
56
+ 2025-09-23 02:26:36,072 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0424 | Val rms_score: 54.7065
57
+ 2025-09-23 02:26:39,437 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0379 | Val rms_score: 54.7598
58
+ 2025-09-23 02:26:43,023 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0415 | Val rms_score: 54.7665
59
+ 2025-09-23 02:26:47,311 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0435 | Val rms_score: 54.4067
60
+ 2025-09-23 02:26:50,535 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0402 | Val rms_score: 54.3983
61
+ 2025-09-23 02:26:53,661 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0428 | Val rms_score: 54.7264
62
+ 2025-09-23 02:26:56,845 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0428 | Val rms_score: 54.2095
63
+ 2025-09-23 02:27:00,262 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0379 | Val rms_score: 54.7599
64
+ 2025-09-23 02:27:03,486 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0343 | Val rms_score: 54.6994
65
+ 2025-09-23 02:27:06,728 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0411 | Val rms_score: 54.5277
66
+ 2025-09-23 02:27:10,065 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0396 | Val rms_score: 54.7223
67
+ 2025-09-23 02:27:13,354 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0370 | Val rms_score: 55.5460
68
+ 2025-09-23 02:27:16,908 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0398 | Val rms_score: 53.9347
69
+ 2025-09-23 02:27:20,150 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0449 | Val rms_score: 53.8567
70
+ 2025-09-23 02:27:23,384 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0415 | Val rms_score: 54.3969
71
+ 2025-09-23 02:27:26,320 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0378 | Val rms_score: 54.5199
72
+ 2025-09-23 02:27:29,110 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0363 | Val rms_score: 54.5271
73
+ 2025-09-23 02:27:32,680 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0317 | Val rms_score: 54.7049
74
+ 2025-09-23 02:27:35,951 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0352 | Val rms_score: 54.4889
75
+ 2025-09-23 02:27:39,278 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0415 | Val rms_score: 54.1347
76
+ 2025-09-23 02:27:42,585 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0342 | Val rms_score: 54.2777
77
+ 2025-09-23 02:27:45,937 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0318 | Val rms_score: 54.0480
78
+ 2025-09-23 02:27:49,546 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0268 | Val rms_score: 53.9690
79
+ 2025-09-23 02:27:52,807 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0333 | Val rms_score: 54.1931
80
+ 2025-09-23 02:27:56,102 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0333 | Val rms_score: 53.9289
81
+ 2025-09-23 02:27:59,367 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0288 | Val rms_score: 53.9330
82
+ 2025-09-23 02:28:02,391 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0312 | Val rms_score: 54.4347
83
+ 2025-09-23 02:28:06,062 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0329 | Val rms_score: 54.1690
84
+ 2025-09-23 02:28:09,426 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0326 | Val rms_score: 53.9657
85
+ 2025-09-23 02:28:12,781 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0298 | Val rms_score: 54.2592
86
+ 2025-09-23 02:28:16,074 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0309 | Val rms_score: 54.3653
87
+ 2025-09-23 02:28:19,442 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0303 | Val rms_score: 53.6768
88
+ 2025-09-23 02:28:23,103 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0276 | Val rms_score: 54.1879
89
+ 2025-09-23 02:28:26,232 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0311 | Val rms_score: 54.3574
90
+ 2025-09-23 02:28:29,390 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0259 | Val rms_score: 54.1942
91
+ 2025-09-23 02:28:32,580 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0305 | Val rms_score: 53.7892
92
+ 2025-09-23 02:28:35,797 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0309 | Val rms_score: 54.3539
93
+ 2025-09-23 02:28:39,317 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0286 | Val rms_score: 53.5298
94
+ 2025-09-23 02:28:42,474 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0268 | Val rms_score: 53.8574
95
+ 2025-09-23 02:28:45,263 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0286 | Val rms_score: 54.2696
96
+ 2025-09-23 02:28:48,175 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0255 | Val rms_score: 54.1452
97
+ 2025-09-23 02:28:51,570 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0239 | Val rms_score: 53.6785
98
+ 2025-09-23 02:28:55,153 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0229 | Val rms_score: 53.9346
99
+ 2025-09-23 02:28:58,466 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0266 | Val rms_score: 53.6902
100
+ 2025-09-23 02:29:01,804 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0238 | Val rms_score: 53.2765
101
+ 2025-09-23 02:29:05,131 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0233 | Val rms_score: 53.7092
102
+ 2025-09-23 02:29:08,426 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0193 | Val rms_score: 54.2826
103
+ 2025-09-23 02:29:12,021 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0238 | Val rms_score: 53.4759
104
+ 2025-09-23 02:29:15,286 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0221 | Val rms_score: 53.8316
105
+ 2025-09-23 02:29:17,971 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0230 | Val rms_score: 54.1561
106
+ 2025-09-23 02:29:21,197 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0275 | Val rms_score: 53.5898
107
+ 2025-09-23 02:29:25,391 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0197 | Val rms_score: 53.6764
108
+ 2025-09-23 02:29:29,042 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0249 | Val rms_score: 53.4852
109
+ 2025-09-23 02:29:32,411 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0235 | Val rms_score: 54.0914
110
+ 2025-09-23 02:29:35,672 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0216 | Val rms_score: 53.8689
111
+ 2025-09-23 02:29:38,979 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0224 | Val rms_score: 54.0338
112
+ 2025-09-23 02:29:39,427 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Test rms_score: 44.8877
113
+ 2025-09-23 02:29:39,732 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset clearance at 2025-09-23_02-29-39
114
+ 2025-09-23 02:29:42,808 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 2.6667 | Val rms_score: 62.1389
115
+ 2025-09-23 02:29:42,808 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 21
116
+ 2025-09-23 02:29:43,323 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 62.1389
117
+ 2025-09-23 02:29:46,535 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 1.2083 | Val rms_score: 54.2129
118
+ 2025-09-23 02:29:46,712 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 42
119
+ 2025-09-23 02:29:47,227 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 54.2129
120
+ 2025-09-23 02:29:50,388 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.9702 | Val rms_score: 53.4431
121
+ 2025-09-23 02:29:50,567 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 63
122
+ 2025-09-23 02:29:51,092 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 53.4431
123
+ 2025-09-23 02:29:54,288 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.8512 | Val rms_score: 53.6316
124
+ 2025-09-23 02:29:57,390 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.8063 | Val rms_score: 52.4938
125
+ 2025-09-23 02:29:57,568 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 105
126
+ 2025-09-23 02:29:58,095 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 52.4938
127
+ 2025-09-23 02:30:01,012 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.6399 | Val rms_score: 53.9315
128
+ 2025-09-23 02:30:04,341 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.5417 | Val rms_score: 54.7955
129
+ 2025-09-23 02:30:07,637 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.4464 | Val rms_score: 54.3445
130
+ 2025-09-23 02:30:10,811 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.3646 | Val rms_score: 55.8584
131
+ 2025-09-23 02:30:14,176 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.3187 | Val rms_score: 57.0586
132
+ 2025-09-23 02:30:17,553 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.2455 | Val rms_score: 56.0612
133
+ 2025-09-23 02:30:21,219 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1994 | Val rms_score: 55.6972
134
+ 2025-09-23 02:30:24,557 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1749 | Val rms_score: 55.5981
135
+ 2025-09-23 02:30:27,655 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1525 | Val rms_score: 55.6469
136
+ 2025-09-23 02:30:30,901 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.1297 | Val rms_score: 54.8865
137
+ 2025-09-23 02:30:33,661 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.1116 | Val rms_score: 54.3072
138
+ 2025-09-23 02:30:37,139 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.1086 | Val rms_score: 53.7475
139
+ 2025-09-23 02:30:40,386 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0960 | Val rms_score: 54.2329
140
+ 2025-09-23 02:30:43,642 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0960 | Val rms_score: 54.3448
141
+ 2025-09-23 02:30:47,020 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0781 | Val rms_score: 54.4796
142
+ 2025-09-23 02:30:50,352 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0807 | Val rms_score: 53.6359
143
+ 2025-09-23 02:30:53,901 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0770 | Val rms_score: 54.1505
144
+ 2025-09-23 02:30:57,282 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0733 | Val rms_score: 53.4667
145
+ 2025-09-23 02:31:00,544 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0918 | Val rms_score: 53.4772
146
+ 2025-09-23 02:31:03,915 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0618 | Val rms_score: 54.9615
147
+ 2025-09-23 02:31:07,182 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0681 | Val rms_score: 54.2795
148
+ 2025-09-23 02:31:10,785 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0562 | Val rms_score: 53.6852
149
+ 2025-09-23 02:31:14,097 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0606 | Val rms_score: 54.8208
150
+ 2025-09-23 02:31:17,305 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0582 | Val rms_score: 54.0562
151
+ 2025-09-23 02:31:20,040 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0640 | Val rms_score: 53.4400
152
+ 2025-09-23 02:31:23,127 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0562 | Val rms_score: 54.8254
153
+ 2025-09-23 02:31:26,737 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0580 | Val rms_score: 53.5470
154
+ 2025-09-23 02:31:30,095 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0558 | Val rms_score: 54.0753
155
+ 2025-09-23 02:31:33,451 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0474 | Val rms_score: 53.3721
156
+ 2025-09-23 02:31:36,845 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0603 | Val rms_score: 56.0334
157
+ 2025-09-23 02:31:40,215 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0551 | Val rms_score: 54.0927
158
+ 2025-09-23 02:31:43,810 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0476 | Val rms_score: 53.8720
159
+ 2025-09-23 02:31:47,036 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0476 | Val rms_score: 54.5329
160
+ 2025-09-23 02:31:49,876 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0450 | Val rms_score: 54.2387
161
+ 2025-09-23 02:31:53,272 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0422 | Val rms_score: 54.1994
162
+ 2025-09-23 02:31:56,598 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0439 | Val rms_score: 53.8875
163
+ 2025-09-23 02:32:00,233 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0476 | Val rms_score: 54.6129
164
+ 2025-09-23 02:32:03,561 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0521 | Val rms_score: 53.3118
165
+ 2025-09-23 02:32:06,885 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0480 | Val rms_score: 53.9840
166
+ 2025-09-23 02:32:10,236 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0452 | Val rms_score: 54.9699
167
+ 2025-09-23 02:32:13,543 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0454 | Val rms_score: 54.0350
168
+ 2025-09-23 02:32:17,106 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0443 | Val rms_score: 54.0397
169
+ 2025-09-23 02:32:21,355 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0535 | Val rms_score: 53.9308
170
+ 2025-09-23 02:32:24,486 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0402 | Val rms_score: 54.2807
171
+ 2025-09-23 02:32:27,597 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0350 | Val rms_score: 53.7566
172
+ 2025-09-23 02:32:30,711 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0383 | Val rms_score: 54.3024
173
+ 2025-09-23 02:32:34,096 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0383 | Val rms_score: 53.5839
174
+ 2025-09-23 02:32:37,154 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0376 | Val rms_score: 54.2078
175
+ 2025-09-23 02:32:40,181 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0415 | Val rms_score: 53.2826
176
+ 2025-09-23 02:32:43,232 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0510 | Val rms_score: 55.6985
177
+ 2025-09-23 02:32:46,506 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0426 | Val rms_score: 53.0345
178
+ 2025-09-23 02:32:50,062 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0368 | Val rms_score: 54.2210
179
+ 2025-09-23 02:32:53,402 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0388 | Val rms_score: 53.3964
180
+ 2025-09-23 02:32:56,600 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0376 | Val rms_score: 53.6557
181
+ 2025-09-23 02:32:59,877 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0326 | Val rms_score: 53.4909
182
+ 2025-09-23 02:33:03,266 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0342 | Val rms_score: 53.4979
183
+ 2025-09-23 02:33:06,285 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0245 | Val rms_score: 54.0685
184
+ 2025-09-23 02:33:09,690 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0363 | Val rms_score: 53.3529
185
+ 2025-09-23 02:33:13,014 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0324 | Val rms_score: 54.0627
186
+ 2025-09-23 02:33:16,433 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0326 | Val rms_score: 53.5633
187
+ 2025-09-23 02:33:19,806 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0346 | Val rms_score: 53.7578
188
+ 2025-09-23 02:33:23,254 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0304 | Val rms_score: 54.1811
189
+ 2025-09-23 02:33:26,448 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0296 | Val rms_score: 53.3319
190
+ 2025-09-23 02:33:29,627 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0283 | Val rms_score: 54.1282
191
+ 2025-09-23 02:33:32,785 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0279 | Val rms_score: 53.1424
192
+ 2025-09-23 02:33:35,913 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0270 | Val rms_score: 53.7668
193
+ 2025-09-23 02:33:39,410 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0272 | Val rms_score: 54.0468
194
+ 2025-09-23 02:33:42,733 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0264 | Val rms_score: 53.7667
195
+ 2025-09-23 02:33:46,109 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0292 | Val rms_score: 54.0684
196
+ 2025-09-23 02:33:49,476 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0272 | Val rms_score: 53.5802
197
+ 2025-09-23 02:33:52,799 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0283 | Val rms_score: 54.7996
198
+ 2025-09-23 02:33:56,155 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0227 | Val rms_score: 53.9152
199
+ 2025-09-23 02:33:59,173 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0227 | Val rms_score: 53.3719
200
+ 2025-09-23 02:34:01,996 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0225 | Val rms_score: 53.7240
201
+ 2025-09-23 02:34:05,408 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0227 | Val rms_score: 52.8891
202
+ 2025-09-23 02:34:08,768 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0302 | Val rms_score: 53.3242
203
+ 2025-09-23 02:34:12,454 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0224 | Val rms_score: 53.9964
204
+ 2025-09-23 02:34:15,807 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0246 | Val rms_score: 53.4009
205
+ 2025-09-23 02:34:19,212 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0210 | Val rms_score: 53.7258
206
+ 2025-09-23 02:34:22,535 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0229 | Val rms_score: 53.5940
207
+ 2025-09-23 02:34:25,731 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0249 | Val rms_score: 53.5943
208
+ 2025-09-23 02:34:29,296 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0228 | Val rms_score: 53.6351
209
+ 2025-09-23 02:34:32,556 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0232 | Val rms_score: 52.7507
210
+ 2025-09-23 02:34:35,872 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0264 | Val rms_score: 53.9168
211
+ 2025-09-23 02:34:39,168 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0233 | Val rms_score: 53.8379
212
+ 2025-09-23 02:34:42,462 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0201 | Val rms_score: 53.5661
213
+ 2025-09-23 02:34:46,143 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0208 | Val rms_score: 53.5656
214
+ 2025-09-23 02:34:49,510 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0234 | Val rms_score: 53.5429
215
+ 2025-09-23 02:34:52,853 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0236 | Val rms_score: 52.8555
216
+ 2025-09-23 02:34:56,201 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0224 | Val rms_score: 53.2964
217
+ 2025-09-23 02:35:00,320 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0203 | Val rms_score: 53.0408
218
+ 2025-09-23 02:35:03,816 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0207 | Val rms_score: 53.4718
219
+ 2025-09-23 02:35:07,066 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0222 | Val rms_score: 52.8475
220
+ 2025-09-23 02:35:10,289 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0206 | Val rms_score: 53.1519
221
+ 2025-09-23 02:35:13,501 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0193 | Val rms_score: 52.7876
222
+ 2025-09-23 02:35:13,911 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Test rms_score: 44.7074
223
+ 2025-09-23 02:35:14,244 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset clearance at 2025-09-23_02-35-14
224
+ 2025-09-23 02:35:16,940 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 2.7024 | Val rms_score: 62.8137
225
+ 2025-09-23 02:35:16,940 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 21
226
+ 2025-09-23 02:35:17,480 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 62.8137
227
+ 2025-09-23 02:35:20,439 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 1.1726 | Val rms_score: 53.0834
228
+ 2025-09-23 02:35:20,611 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 42
229
+ 2025-09-23 02:35:21,145 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 53.0834
230
+ 2025-09-23 02:35:24,536 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.9643 | Val rms_score: 53.4656
231
+ 2025-09-23 02:35:27,852 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.8631 | Val rms_score: 53.6624
232
+ 2025-09-23 02:35:31,289 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.8938 | Val rms_score: 53.5688
233
+ 2025-09-23 02:35:34,592 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.6429 | Val rms_score: 52.4163
234
+ 2025-09-23 02:35:35,054 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Global step of best model: 126
235
+ 2025-09-23 02:35:35,587 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val rms_score: 52.4163
236
+ 2025-09-23 02:35:38,869 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.5417 | Val rms_score: 53.7688
237
+ 2025-09-23 02:35:41,809 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.4315 | Val rms_score: 54.1721
238
+ 2025-09-23 02:35:45,011 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.3705 | Val rms_score: 55.1075
239
+ 2025-09-23 02:35:48,166 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.3266 | Val rms_score: 57.0364
240
+ 2025-09-23 02:35:51,324 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.2292 | Val rms_score: 56.6471
241
+ 2025-09-23 02:35:54,803 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.1979 | Val rms_score: 56.3778
242
+ 2025-09-23 02:35:58,036 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1682 | Val rms_score: 56.0551
243
+ 2025-09-23 02:36:01,298 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.1391 | Val rms_score: 55.6539
244
+ 2025-09-23 02:36:04,529 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.1266 | Val rms_score: 55.8152
245
+ 2025-09-23 02:36:07,769 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.1205 | Val rms_score: 55.4859
246
+ 2025-09-23 02:36:11,263 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.1101 | Val rms_score: 55.4728
247
+ 2025-09-23 02:36:14,614 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0945 | Val rms_score: 54.9457
248
+ 2025-09-23 02:36:17,967 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0844 | Val rms_score: 55.2624
249
+ 2025-09-23 02:36:21,344 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0965 | Val rms_score: 55.3222
250
+ 2025-09-23 02:36:24,701 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0882 | Val rms_score: 54.9538
251
+ 2025-09-23 02:36:28,312 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0774 | Val rms_score: 54.4550
252
+ 2025-09-23 02:36:31,581 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0714 | Val rms_score: 55.2149
253
+ 2025-09-23 02:36:34,320 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0957 | Val rms_score: 54.4989
254
+ 2025-09-23 02:36:37,328 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0677 | Val rms_score: 55.0280
255
+ 2025-09-23 02:36:40,686 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0632 | Val rms_score: 55.0573
256
+ 2025-09-23 02:36:44,212 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0610 | Val rms_score: 54.8122
257
+ 2025-09-23 02:36:47,602 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0636 | Val rms_score: 55.2845
258
+ 2025-09-23 02:36:50,957 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0590 | Val rms_score: 54.9997
259
+ 2025-09-23 02:36:54,313 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0629 | Val rms_score: 55.1799
260
+ 2025-09-23 02:36:57,295 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0536 | Val rms_score: 53.8059
261
+ 2025-09-23 02:37:00,667 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0510 | Val rms_score: 55.8723
262
+ 2025-09-23 02:37:03,789 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0532 | Val rms_score: 54.2596
263
+ 2025-09-23 02:37:07,085 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0578 | Val rms_score: 55.1476
264
+ 2025-09-23 02:37:10,308 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0580 | Val rms_score: 54.3191
265
+ 2025-09-23 02:37:13,581 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0562 | Val rms_score: 55.3143
266
+ 2025-09-23 02:37:17,122 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0588 | Val rms_score: 55.3999
267
+ 2025-09-23 02:37:20,410 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0502 | Val rms_score: 54.8114
268
+ 2025-09-23 02:37:23,814 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0461 | Val rms_score: 54.2705
269
+ 2025-09-23 02:37:27,129 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0454 | Val rms_score: 54.6981
270
+ 2025-09-23 02:37:30,471 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0433 | Val rms_score: 55.1799
271
+ 2025-09-23 02:37:34,026 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0450 | Val rms_score: 54.5653
272
+ 2025-09-23 02:37:37,307 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0316 | Val rms_score: 55.3091
273
+ 2025-09-23 02:37:40,549 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0452 | Val rms_score: 54.5225
274
+ 2025-09-23 02:37:43,900 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0445 | Val rms_score: 54.8949
275
+ 2025-09-23 02:37:47,255 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0415 | Val rms_score: 54.8670
276
+ 2025-09-23 02:37:50,773 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0357 | Val rms_score: 54.6485
277
+ 2025-09-23 02:37:54,530 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0420 | Val rms_score: 54.7409
278
+ 2025-09-23 02:37:57,407 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0424 | Val rms_score: 54.7172
279
+ 2025-09-23 02:38:00,764 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0365 | Val rms_score: 54.8498
280
+ 2025-09-23 02:38:04,116 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0404 | Val rms_score: 55.2955
281
+ 2025-09-23 02:38:07,666 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0353 | Val rms_score: 54.7863
282
+ 2025-09-23 02:38:11,045 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0409 | Val rms_score: 54.2605
283
+ 2025-09-23 02:38:13,784 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0379 | Val rms_score: 53.9504
284
+ 2025-09-23 02:38:17,050 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0365 | Val rms_score: 54.4062
285
+ 2025-09-23 02:38:20,367 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0331 | Val rms_score: 54.7869
286
+ 2025-09-23 02:38:24,049 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0339 | Val rms_score: 54.1264
287
+ 2025-09-23 02:38:27,413 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0306 | Val rms_score: 54.7420
288
+ 2025-09-23 02:38:30,785 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0333 | Val rms_score: 54.3387
289
+ 2025-09-23 02:38:34,137 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0301 | Val rms_score: 54.5247
290
+ 2025-09-23 02:38:37,420 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0322 | Val rms_score: 54.4563
291
+ 2025-09-23 02:38:41,017 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0283 | Val rms_score: 55.2089
292
+ 2025-09-23 02:38:44,268 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0316 | Val rms_score: 54.2290
293
+ 2025-09-23 02:38:47,457 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0303 | Val rms_score: 55.7078
294
+ 2025-09-23 02:38:50,813 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0301 | Val rms_score: 53.8519
295
+ 2025-09-23 02:38:54,105 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0320 | Val rms_score: 54.9603
296
+ 2025-09-23 02:38:57,633 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0352 | Val rms_score: 53.9485
297
+ 2025-09-23 02:39:00,829 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0296 | Val rms_score: 53.8367
298
+ 2025-09-23 02:39:04,008 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0294 | Val rms_score: 54.1720
299
+ 2025-09-23 02:39:07,206 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0322 | Val rms_score: 54.6150
300
+ 2025-09-23 02:39:10,371 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0281 | Val rms_score: 53.6285
301
+ 2025-09-23 02:39:13,588 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0342 | Val rms_score: 54.2210
302
+ 2025-09-23 02:39:16,579 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0294 | Val rms_score: 54.3746
303
+ 2025-09-23 02:39:19,929 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0259 | Val rms_score: 54.5778
304
+ 2025-09-23 02:39:23,266 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0286 | Val rms_score: 54.4729
305
+ 2025-09-23 02:39:26,454 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0260 | Val rms_score: 54.5327
306
+ 2025-09-23 02:39:30,049 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0276 | Val rms_score: 53.8169
307
+ 2025-09-23 02:39:33,425 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0266 | Val rms_score: 54.2326
308
+ 2025-09-23 02:39:36,658 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0259 | Val rms_score: 53.7880
309
+ 2025-09-23 02:39:39,981 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0288 | Val rms_score: 54.4541
310
+ 2025-09-23 02:39:43,302 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0198 | Val rms_score: 54.4994
311
+ 2025-09-23 02:39:46,851 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0247 | Val rms_score: 53.8658
312
+ 2025-09-23 02:39:50,077 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0247 | Val rms_score: 54.5324
313
+ 2025-09-23 02:39:53,402 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0262 | Val rms_score: 53.9655
314
+ 2025-09-23 02:39:56,707 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0240 | Val rms_score: 54.1139
315
+ 2025-09-23 02:39:59,897 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0247 | Val rms_score: 53.7986
316
+ 2025-09-23 02:40:03,404 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0226 | Val rms_score: 54.6571
317
+ 2025-09-23 02:40:06,631 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0251 | Val rms_score: 54.2616
318
+ 2025-09-23 02:40:09,840 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0238 | Val rms_score: 54.6032
319
+ 2025-09-23 02:40:13,128 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0275 | Val rms_score: 54.1367
320
+ 2025-09-23 02:40:16,413 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0265 | Val rms_score: 54.1650
321
+ 2025-09-23 02:40:19,921 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0206 | Val rms_score: 54.0102
322
+ 2025-09-23 02:40:23,262 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0230 | Val rms_score: 54.0670
323
+ 2025-09-23 02:40:26,585 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0275 | Val rms_score: 54.2562
324
+ 2025-09-23 02:40:29,869 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0210 | Val rms_score: 54.0515
325
+ 2025-09-23 02:40:33,679 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0201 | Val rms_score: 54.4246
326
+ 2025-09-23 02:40:37,094 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0209 | Val rms_score: 53.9977
327
+ 2025-09-23 02:40:40,403 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0226 | Val rms_score: 54.3206
328
+ 2025-09-23 02:40:43,697 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0198 | Val rms_score: 53.7101
329
+ 2025-09-23 02:40:46,952 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0209 | Val rms_score: 54.1627
330
+ 2025-09-23 02:40:47,242 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Test rms_score: 42.4459
331
+ 2025-09-23 02:40:47,563 - logs_modchembert_clearance_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg rms_score: 44.0137, Std Dev: 1.1110
logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_delaney_epochs100_batch_size64_20250923_024047.log ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 02:40:47,565 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Running benchmark for dataset: delaney
2
+ 2025-09-23 02:40:47,565 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - dataset: delaney, tasks: ['measured_log_solubility_in_mols_per_litre'], epochs: 100, learning rate: 3e-05, transform: True
3
+ 2025-09-23 02:40:47,572 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Starting triplicate run 1 for dataset delaney at 2025-09-23_02-40-47
4
+ 2025-09-23 02:40:50,167 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 1/100 | Train Loss: 0.4500 | Val rms_score: 1.1857
5
+ 2025-09-23 02:40:50,167 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 15
6
+ 2025-09-23 02:40:50,669 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 1 with val rms_score: 1.1857
7
+ 2025-09-23 02:40:53,328 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 2/100 | Train Loss: 0.1427 | Val rms_score: 1.0089
8
+ 2025-09-23 02:40:53,495 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 30
9
+ 2025-09-23 02:40:54,011 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 2 with val rms_score: 1.0089
10
+ 2025-09-23 02:40:56,560 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 3/100 | Train Loss: 0.0927 | Val rms_score: 0.9846
11
+ 2025-09-23 02:40:56,728 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 45
12
+ 2025-09-23 02:40:57,241 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 3 with val rms_score: 0.9846
13
+ 2025-09-23 02:40:59,796 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 4/100 | Train Loss: 0.0760 | Val rms_score: 0.9739
14
+ 2025-09-23 02:40:59,970 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 60
15
+ 2025-09-23 02:41:00,498 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 4 with val rms_score: 0.9739
16
+ 2025-09-23 02:41:03,077 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 5/100 | Train Loss: 0.0714 | Val rms_score: 0.9536
17
+ 2025-09-23 02:41:03,254 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 75
18
+ 2025-09-23 02:41:03,756 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 5 with val rms_score: 0.9536
19
+ 2025-09-23 02:41:06,307 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 6/100 | Train Loss: 0.0760 | Val rms_score: 0.9469
20
+ 2025-09-23 02:41:06,734 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 90
21
+ 2025-09-23 02:41:07,238 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 6 with val rms_score: 0.9469
22
+ 2025-09-23 02:41:09,853 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 7/100 | Train Loss: 0.0563 | Val rms_score: 0.9132
23
+ 2025-09-23 02:41:10,022 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 105
24
+ 2025-09-23 02:41:10,536 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 7 with val rms_score: 0.9132
25
+ 2025-09-23 02:41:13,173 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 8/100 | Train Loss: 0.0544 | Val rms_score: 0.8970
26
+ 2025-09-23 02:41:13,340 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 120
27
+ 2025-09-23 02:41:13,842 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 8 with val rms_score: 0.8970
28
+ 2025-09-23 02:41:16,443 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 9/100 | Train Loss: 0.0500 | Val rms_score: 0.8960
29
+ 2025-09-23 02:41:16,638 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 135
30
+ 2025-09-23 02:41:17,167 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 9 with val rms_score: 0.8960
31
+ 2025-09-23 02:41:19,833 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 10/100 | Train Loss: 0.0484 | Val rms_score: 0.8885
32
+ 2025-09-23 02:41:20,001 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 150
33
+ 2025-09-23 02:41:20,506 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 10 with val rms_score: 0.8885
34
+ 2025-09-23 02:41:23,127 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 11/100 | Train Loss: 0.0443 | Val rms_score: 0.8704
35
+ 2025-09-23 02:41:23,557 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 165
36
+ 2025-09-23 02:41:24,063 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 11 with val rms_score: 0.8704
37
+ 2025-09-23 02:41:26,660 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 12/100 | Train Loss: 0.0380 | Val rms_score: 0.8676
38
+ 2025-09-23 02:41:26,845 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 180
39
+ 2025-09-23 02:41:27,369 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 12 with val rms_score: 0.8676
40
+ 2025-09-23 02:41:29,877 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 13/100 | Train Loss: 0.0375 | Val rms_score: 0.8638
41
+ 2025-09-23 02:41:30,044 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 195
42
+ 2025-09-23 02:41:30,552 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 13 with val rms_score: 0.8638
43
+ 2025-09-23 02:41:33,091 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 14/100 | Train Loss: 0.0359 | Val rms_score: 0.8794
44
+ 2025-09-23 02:41:35,550 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 15/100 | Train Loss: 0.0318 | Val rms_score: 0.8566
45
+ 2025-09-23 02:41:35,731 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 225
46
+ 2025-09-23 02:41:36,272 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 15 with val rms_score: 0.8566
47
+ 2025-09-23 02:41:38,764 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 16/100 | Train Loss: 0.0323 | Val rms_score: 0.8679
48
+ 2025-09-23 02:41:41,546 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 17/100 | Train Loss: 0.0288 | Val rms_score: 0.8602
49
+ 2025-09-23 02:41:43,848 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 18/100 | Train Loss: 0.0312 | Val rms_score: 0.8730
50
+ 2025-09-23 02:41:46,127 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 19/100 | Train Loss: 0.0275 | Val rms_score: 0.8833
51
+ 2025-09-23 02:41:48,361 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 20/100 | Train Loss: 0.0271 | Val rms_score: 0.8639
52
+ 2025-09-23 02:41:50,802 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 21/100 | Train Loss: 0.0247 | Val rms_score: 0.8621
53
+ 2025-09-23 02:41:53,546 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 22/100 | Train Loss: 0.0249 | Val rms_score: 0.8603
54
+ 2025-09-23 02:41:55,973 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 23/100 | Train Loss: 0.0238 | Val rms_score: 0.8625
55
+ 2025-09-23 02:41:58,080 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 24/100 | Train Loss: 0.0234 | Val rms_score: 0.8566
56
+ 2025-09-23 02:41:58,238 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 360
57
+ 2025-09-23 02:41:58,741 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 24 with val rms_score: 0.8566
58
+ 2025-09-23 02:42:01,170 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 25/100 | Train Loss: 0.0229 | Val rms_score: 0.8675
59
+ 2025-09-23 02:42:03,668 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 26/100 | Train Loss: 0.0216 | Val rms_score: 0.8678
60
+ 2025-09-23 02:42:06,459 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 27/100 | Train Loss: 0.0206 | Val rms_score: 0.8608
61
+ 2025-09-23 02:42:09,074 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 28/100 | Train Loss: 0.0216 | Val rms_score: 0.8539
62
+ 2025-09-23 02:42:09,244 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 420
63
+ 2025-09-23 02:42:09,757 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 28 with val rms_score: 0.8539
64
+ 2025-09-23 02:42:12,315 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 29/100 | Train Loss: 0.0214 | Val rms_score: 0.8667
65
+ 2025-09-23 02:42:14,890 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 30/100 | Train Loss: 0.0204 | Val rms_score: 0.8692
66
+ 2025-09-23 02:42:17,496 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 31/100 | Train Loss: 0.0215 | Val rms_score: 0.8654
67
+ 2025-09-23 02:42:20,360 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 32/100 | Train Loss: 0.0216 | Val rms_score: 0.8950
68
+ 2025-09-23 02:42:22,982 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 33/100 | Train Loss: 0.0215 | Val rms_score: 0.8677
69
+ 2025-09-23 02:42:25,500 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 34/100 | Train Loss: 0.0163 | Val rms_score: 0.8771
70
+ 2025-09-23 02:42:28,080 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 35/100 | Train Loss: 0.0163 | Val rms_score: 0.8691
71
+ 2025-09-23 02:42:30,649 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 36/100 | Train Loss: 0.0165 | Val rms_score: 0.8680
72
+ 2025-09-23 02:42:33,504 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 37/100 | Train Loss: 0.0177 | Val rms_score: 0.8464
73
+ 2025-09-23 02:42:33,675 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 555
74
+ 2025-09-23 02:42:34,178 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 37 with val rms_score: 0.8464
75
+ 2025-09-23 02:42:36,737 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 38/100 | Train Loss: 0.0190 | Val rms_score: 0.8701
76
+ 2025-09-23 02:42:39,357 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 39/100 | Train Loss: 0.0160 | Val rms_score: 0.8599
77
+ 2025-09-23 02:42:41,847 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 40/100 | Train Loss: 0.0152 | Val rms_score: 0.8645
78
+ 2025-09-23 02:42:44,288 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 41/100 | Train Loss: 0.0145 | Val rms_score: 0.8609
79
+ 2025-09-23 02:42:47,061 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 42/100 | Train Loss: 0.0140 | Val rms_score: 0.8764
80
+ 2025-09-23 02:42:49,640 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 43/100 | Train Loss: 0.0145 | Val rms_score: 0.8608
81
+ 2025-09-23 02:42:52,180 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 44/100 | Train Loss: 0.0142 | Val rms_score: 0.8709
82
+ 2025-09-23 02:42:54,639 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 45/100 | Train Loss: 0.0143 | Val rms_score: 0.8550
83
+ 2025-09-23 02:42:56,977 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 46/100 | Train Loss: 0.0131 | Val rms_score: 0.8627
84
+ 2025-09-23 02:42:59,626 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 47/100 | Train Loss: 0.0134 | Val rms_score: 0.8655
85
+ 2025-09-23 02:43:01,783 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 48/100 | Train Loss: 0.0132 | Val rms_score: 0.8674
86
+ 2025-09-23 02:43:04,209 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 49/100 | Train Loss: 0.0136 | Val rms_score: 0.8595
87
+ 2025-09-23 02:43:06,727 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 50/100 | Train Loss: 0.0124 | Val rms_score: 0.8654
88
+ 2025-09-23 02:43:08,944 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 51/100 | Train Loss: 0.0124 | Val rms_score: 0.8549
89
+ 2025-09-23 02:43:11,667 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 52/100 | Train Loss: 0.0127 | Val rms_score: 0.8602
90
+ 2025-09-23 02:43:14,167 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 53/100 | Train Loss: 0.0120 | Val rms_score: 0.8662
91
+ 2025-09-23 02:43:16,642 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 54/100 | Train Loss: 0.0124 | Val rms_score: 0.8644
92
+ 2025-09-23 02:43:19,098 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 55/100 | Train Loss: 0.0122 | Val rms_score: 0.8525
93
+ 2025-09-23 02:43:21,742 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 56/100 | Train Loss: 0.0133 | Val rms_score: 0.8786
94
+ 2025-09-23 02:43:24,494 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 57/100 | Train Loss: 0.0130 | Val rms_score: 0.8562
95
+ 2025-09-23 02:43:27,145 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 58/100 | Train Loss: 0.0121 | Val rms_score: 0.8701
96
+ 2025-09-23 02:43:29,752 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 59/100 | Train Loss: 0.0117 | Val rms_score: 0.8625
97
+ 2025-09-23 02:43:32,303 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 60/100 | Train Loss: 0.0121 | Val rms_score: 0.8638
98
+ 2025-09-23 02:43:34,910 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 61/100 | Train Loss: 0.0109 | Val rms_score: 0.8556
99
+ 2025-09-23 02:43:37,712 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 62/100 | Train Loss: 0.0115 | Val rms_score: 0.8630
100
+ 2025-09-23 02:43:40,256 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 63/100 | Train Loss: 0.0109 | Val rms_score: 0.8572
101
+ 2025-09-23 02:43:42,786 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 64/100 | Train Loss: 0.0102 | Val rms_score: 0.8631
102
+ 2025-09-23 02:43:45,327 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 65/100 | Train Loss: 0.0131 | Val rms_score: 0.8740
103
+ 2025-09-23 02:43:47,908 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 66/100 | Train Loss: 0.0283 | Val rms_score: 0.8802
104
+ 2025-09-23 02:43:51,640 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 67/100 | Train Loss: 0.0146 | Val rms_score: 0.8759
105
+ 2025-09-23 02:43:54,177 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 68/100 | Train Loss: 0.0134 | Val rms_score: 0.8607
106
+ 2025-09-23 02:43:56,757 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 69/100 | Train Loss: 0.0118 | Val rms_score: 0.8376
107
+ 2025-09-23 02:43:56,890 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 1035
108
+ 2025-09-23 02:43:57,419 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 69 with val rms_score: 0.8376
109
+ 2025-09-23 02:44:00,004 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 70/100 | Train Loss: 0.0102 | Val rms_score: 0.8538
110
+ 2025-09-23 02:44:02,670 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 71/100 | Train Loss: 0.0098 | Val rms_score: 0.8538
111
+ 2025-09-23 02:44:05,492 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 72/100 | Train Loss: 0.0097 | Val rms_score: 0.8680
112
+ 2025-09-23 02:44:08,096 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 73/100 | Train Loss: 0.0096 | Val rms_score: 0.8598
113
+ 2025-09-23 02:44:10,503 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 74/100 | Train Loss: 0.0098 | Val rms_score: 0.8698
114
+ 2025-09-23 02:44:12,718 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 75/100 | Train Loss: 0.0109 | Val rms_score: 0.8882
115
+ 2025-09-23 02:44:14,974 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 76/100 | Train Loss: 0.0104 | Val rms_score: 0.8611
116
+ 2025-09-23 02:44:17,762 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 77/100 | Train Loss: 0.0100 | Val rms_score: 0.8770
117
+ 2025-09-23 02:44:20,308 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 78/100 | Train Loss: 0.0107 | Val rms_score: 0.8710
118
+ 2025-09-23 02:44:22,756 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 79/100 | Train Loss: 0.0115 | Val rms_score: 0.9117
119
+ 2025-09-23 02:44:25,326 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 80/100 | Train Loss: 0.0110 | Val rms_score: 0.8715
120
+ 2025-09-23 02:44:27,986 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 81/100 | Train Loss: 0.0100 | Val rms_score: 0.8619
121
+ 2025-09-23 02:44:30,817 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 82/100 | Train Loss: 0.0094 | Val rms_score: 0.8700
122
+ 2025-09-23 02:44:33,385 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 83/100 | Train Loss: 0.0097 | Val rms_score: 0.8573
123
+ 2025-09-23 02:44:35,853 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 84/100 | Train Loss: 0.0087 | Val rms_score: 0.8785
124
+ 2025-09-23 02:44:38,447 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 85/100 | Train Loss: 0.0090 | Val rms_score: 0.8672
125
+ 2025-09-23 02:44:40,933 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 86/100 | Train Loss: 0.0078 | Val rms_score: 0.8800
126
+ 2025-09-23 02:44:43,670 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 87/100 | Train Loss: 0.0073 | Val rms_score: 0.8631
127
+ 2025-09-23 02:44:46,195 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 88/100 | Train Loss: 0.0083 | Val rms_score: 0.8601
128
+ 2025-09-23 02:44:48,729 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 89/100 | Train Loss: 0.0076 | Val rms_score: 0.8657
129
+ 2025-09-23 02:44:51,316 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 90/100 | Train Loss: 0.0085 | Val rms_score: 0.8888
130
+ 2025-09-23 02:44:53,893 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 91/100 | Train Loss: 0.0086 | Val rms_score: 0.8486
131
+ 2025-09-23 02:44:56,818 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 92/100 | Train Loss: 0.0087 | Val rms_score: 0.8533
132
+ 2025-09-23 02:44:59,367 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 93/100 | Train Loss: 0.0079 | Val rms_score: 0.8582
133
+ 2025-09-23 02:45:01,891 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 94/100 | Train Loss: 0.0087 | Val rms_score: 0.8679
134
+ 2025-09-23 02:45:04,428 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 95/100 | Train Loss: 0.0085 | Val rms_score: 0.8630
135
+ 2025-09-23 02:45:07,026 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 96/100 | Train Loss: 0.0087 | Val rms_score: 0.8877
136
+ 2025-09-23 02:45:09,869 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 97/100 | Train Loss: 0.0093 | Val rms_score: 0.8410
137
+ 2025-09-23 02:45:12,502 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 98/100 | Train Loss: 0.0125 | Val rms_score: 0.9683
138
+ 2025-09-23 02:45:15,056 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 99/100 | Train Loss: 0.0105 | Val rms_score: 0.8497
139
+ 2025-09-23 02:45:17,689 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 100/100 | Train Loss: 0.0101 | Val rms_score: 0.8951
140
+ 2025-09-23 02:45:18,100 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Test rms_score: 0.8280
141
+ 2025-09-23 02:45:18,397 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Starting triplicate run 2 for dataset delaney at 2025-09-23_02-45-18
142
+ 2025-09-23 02:45:20,833 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 1/100 | Train Loss: 0.4625 | Val rms_score: 1.1368
143
+ 2025-09-23 02:45:20,833 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 15
144
+ 2025-09-23 02:45:21,339 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 1 with val rms_score: 1.1368
145
+ 2025-09-23 02:45:23,897 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 2/100 | Train Loss: 0.1365 | Val rms_score: 1.0073
146
+ 2025-09-23 02:45:24,066 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 30
147
+ 2025-09-23 02:45:24,567 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 2 with val rms_score: 1.0073
148
+ 2025-09-23 02:45:26,939 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 3/100 | Train Loss: 0.1052 | Val rms_score: 1.0098
149
+ 2025-09-23 02:45:29,153 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 4/100 | Train Loss: 0.0833 | Val rms_score: 0.9649
150
+ 2025-09-23 02:45:29,351 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 60
151
+ 2025-09-23 02:45:29,877 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 4 with val rms_score: 0.9649
152
+ 2025-09-23 02:45:32,472 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 5/100 | Train Loss: 0.0865 | Val rms_score: 0.9609
153
+ 2025-09-23 02:45:32,643 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 75
154
+ 2025-09-23 02:45:33,150 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 5 with val rms_score: 0.9609
155
+ 2025-09-23 02:45:35,709 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 6/100 | Train Loss: 0.0667 | Val rms_score: 0.9568
156
+ 2025-09-23 02:45:36,149 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 90
157
+ 2025-09-23 02:45:36,656 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 6 with val rms_score: 0.9568
158
+ 2025-09-23 02:45:39,114 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 7/100 | Train Loss: 0.0465 | Val rms_score: 0.9310
159
+ 2025-09-23 02:45:39,282 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 105
160
+ 2025-09-23 02:45:39,784 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 7 with val rms_score: 0.9310
161
+ 2025-09-23 02:45:42,337 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 8/100 | Train Loss: 0.0529 | Val rms_score: 0.9064
162
+ 2025-09-23 02:45:42,523 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 120
163
+ 2025-09-23 02:45:43,031 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 8 with val rms_score: 0.9064
164
+ 2025-09-23 02:45:45,646 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 9/100 | Train Loss: 0.0503 | Val rms_score: 0.8984
165
+ 2025-09-23 02:45:45,830 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 135
166
+ 2025-09-23 02:45:46,346 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 9 with val rms_score: 0.8984
167
+ 2025-09-23 02:45:48,983 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 10/100 | Train Loss: 0.0495 | Val rms_score: 0.9087
168
+ 2025-09-23 02:45:51,566 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 11/100 | Train Loss: 0.0406 | Val rms_score: 0.8934
169
+ 2025-09-23 02:45:52,003 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 165
170
+ 2025-09-23 02:45:52,517 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 11 with val rms_score: 0.8934
171
+ 2025-09-23 02:45:55,140 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 12/100 | Train Loss: 0.0437 | Val rms_score: 0.9022
172
+ 2025-09-23 02:45:57,711 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 13/100 | Train Loss: 0.0401 | Val rms_score: 0.9097
173
+ 2025-09-23 02:46:00,276 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 14/100 | Train Loss: 0.0375 | Val rms_score: 0.8827
174
+ 2025-09-23 02:46:00,445 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 210
175
+ 2025-09-23 02:46:00,952 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 14 with val rms_score: 0.8827
176
+ 2025-09-23 02:46:03,557 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 15/100 | Train Loss: 0.0359 | Val rms_score: 0.8941
177
+ 2025-09-23 02:46:05,995 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 16/100 | Train Loss: 0.0344 | Val rms_score: 0.8850
178
+ 2025-09-23 02:46:08,734 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 17/100 | Train Loss: 0.0346 | Val rms_score: 0.8865
179
+ 2025-09-23 02:46:11,141 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 18/100 | Train Loss: 0.0320 | Val rms_score: 0.8697
180
+ 2025-09-23 02:46:11,310 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 270
181
+ 2025-09-23 02:46:11,825 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 18 with val rms_score: 0.8697
182
+ 2025-09-23 02:46:14,258 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 19/100 | Train Loss: 0.0309 | Val rms_score: 0.8683
183
+ 2025-09-23 02:46:14,426 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 285
184
+ 2025-09-23 02:46:14,925 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 19 with val rms_score: 0.8683
185
+ 2025-09-23 02:46:17,397 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 20/100 | Train Loss: 0.0275 | Val rms_score: 0.8636
186
+ 2025-09-23 02:46:17,566 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 300
187
+ 2025-09-23 02:46:18,094 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 20 with val rms_score: 0.8636
188
+ 2025-09-23 02:46:20,556 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 21/100 | Train Loss: 0.0270 | Val rms_score: 0.8652
189
+ 2025-09-23 02:46:23,375 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 22/100 | Train Loss: 0.0263 | Val rms_score: 0.8603
190
+ 2025-09-23 02:46:23,546 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 330
191
+ 2025-09-23 02:46:24,048 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 22 with val rms_score: 0.8603
192
+ 2025-09-23 02:46:26,563 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 23/100 | Train Loss: 0.0238 | Val rms_score: 0.8636
193
+ 2025-09-23 02:46:29,105 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 24/100 | Train Loss: 0.0243 | Val rms_score: 0.8659
194
+ 2025-09-23 02:46:31,652 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 25/100 | Train Loss: 0.0233 | Val rms_score: 0.8667
195
+ 2025-09-23 02:46:34,207 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 26/100 | Train Loss: 0.0228 | Val rms_score: 0.8787
196
+ 2025-09-23 02:46:36,831 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 27/100 | Train Loss: 0.0223 | Val rms_score: 0.8610
197
+ 2025-09-23 02:46:39,120 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 28/100 | Train Loss: 0.0241 | Val rms_score: 0.8660
198
+ 2025-09-23 02:46:41,344 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 29/100 | Train Loss: 0.0207 | Val rms_score: 0.8463
199
+ 2025-09-23 02:46:41,489 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 435
200
+ 2025-09-23 02:46:41,991 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 29 with val rms_score: 0.8463
201
+ 2025-09-23 02:46:44,054 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 30/100 | Train Loss: 0.0204 | Val rms_score: 0.8538
202
+ 2025-09-23 02:46:46,599 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 31/100 | Train Loss: 0.0195 | Val rms_score: 0.8551
203
+ 2025-09-23 02:46:49,497 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 32/100 | Train Loss: 0.0204 | Val rms_score: 0.8374
204
+ 2025-09-23 02:46:49,664 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 480
205
+ 2025-09-23 02:46:50,190 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 32 with val rms_score: 0.8374
206
+ 2025-09-23 02:46:52,742 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 33/100 | Train Loss: 0.0215 | Val rms_score: 0.8372
207
+ 2025-09-23 02:46:52,911 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 495
208
+ 2025-09-23 02:46:53,421 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 33 with val rms_score: 0.8372
209
+ 2025-09-23 02:46:55,968 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 34/100 | Train Loss: 0.0213 | Val rms_score: 0.8423
210
+ 2025-09-23 02:46:58,409 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 35/100 | Train Loss: 0.0198 | Val rms_score: 0.8551
211
+ 2025-09-23 02:47:00,934 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 36/100 | Train Loss: 0.0180 | Val rms_score: 0.8298
212
+ 2025-09-23 02:47:01,360 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 540
213
+ 2025-09-23 02:47:01,862 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 36 with val rms_score: 0.8298
214
+ 2025-09-23 02:47:04,457 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 37/100 | Train Loss: 0.0182 | Val rms_score: 0.8447
215
+ 2025-09-23 02:47:06,997 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 38/100 | Train Loss: 0.0166 | Val rms_score: 0.8590
216
+ 2025-09-23 02:47:09,587 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 39/100 | Train Loss: 0.0173 | Val rms_score: 0.8569
217
+ 2025-09-23 02:47:12,162 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 40/100 | Train Loss: 0.0163 | Val rms_score: 0.8502
218
+ 2025-09-23 02:47:14,715 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 41/100 | Train Loss: 0.0180 | Val rms_score: 0.8716
219
+ 2025-09-23 02:47:17,476 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 42/100 | Train Loss: 0.0185 | Val rms_score: 0.8544
220
+ 2025-09-23 02:47:19,956 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 43/100 | Train Loss: 0.0152 | Val rms_score: 0.8598
221
+ 2025-09-23 02:47:22,376 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 44/100 | Train Loss: 0.0137 | Val rms_score: 0.8522
222
+ 2025-09-23 02:47:24,873 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 45/100 | Train Loss: 0.0143 | Val rms_score: 0.8706
223
+ 2025-09-23 02:47:27,348 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 46/100 | Train Loss: 0.0141 | Val rms_score: 0.8580
224
+ 2025-09-23 02:47:30,104 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 47/100 | Train Loss: 0.0165 | Val rms_score: 0.8708
225
+ 2025-09-23 02:47:32,605 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 48/100 | Train Loss: 0.0156 | Val rms_score: 0.8600
226
+ 2025-09-23 02:47:35,215 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 49/100 | Train Loss: 0.0156 | Val rms_score: 0.8656
227
+ 2025-09-23 02:47:37,784 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 50/100 | Train Loss: 0.0143 | Val rms_score: 0.8475
228
+ 2025-09-23 02:47:40,349 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 51/100 | Train Loss: 0.0152 | Val rms_score: 0.8559
229
+ 2025-09-23 02:47:43,234 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 52/100 | Train Loss: 0.0133 | Val rms_score: 0.8478
230
+ 2025-09-23 02:47:45,831 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 53/100 | Train Loss: 0.0133 | Val rms_score: 0.8563
231
+ 2025-09-23 02:47:48,411 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 54/100 | Train Loss: 0.0131 | Val rms_score: 0.8634
232
+ 2025-09-23 02:47:50,439 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 55/100 | Train Loss: 0.0134 | Val rms_score: 0.8612
233
+ 2025-09-23 02:47:52,673 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 56/100 | Train Loss: 0.0138 | Val rms_score: 0.8532
234
+ 2025-09-23 02:47:55,193 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 57/100 | Train Loss: 0.0155 | Val rms_score: 0.8927
235
+ 2025-09-23 02:47:57,669 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 58/100 | Train Loss: 0.0147 | Val rms_score: 0.8848
236
+ 2025-09-23 02:48:00,145 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 59/100 | Train Loss: 0.0130 | Val rms_score: 0.8678
237
+ 2025-09-23 02:48:02,615 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 60/100 | Train Loss: 0.0126 | Val rms_score: 0.8685
238
+ 2025-09-23 02:48:05,140 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 61/100 | Train Loss: 0.0107 | Val rms_score: 0.8662
239
+ 2025-09-23 02:48:07,845 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 62/100 | Train Loss: 0.0122 | Val rms_score: 0.8660
240
+ 2025-09-23 02:48:10,375 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 63/100 | Train Loss: 0.0120 | Val rms_score: 0.8583
241
+ 2025-09-23 02:48:12,914 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 64/100 | Train Loss: 0.0107 | Val rms_score: 0.8727
242
+ 2025-09-23 02:48:15,484 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 65/100 | Train Loss: 0.0103 | Val rms_score: 0.8627
243
+ 2025-09-23 02:48:18,042 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 66/100 | Train Loss: 0.0107 | Val rms_score: 0.8652
244
+ 2025-09-23 02:48:21,778 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 67/100 | Train Loss: 0.0123 | Val rms_score: 0.8634
245
+ 2025-09-23 02:48:24,354 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 68/100 | Train Loss: 0.0119 | Val rms_score: 0.8732
246
+ 2025-09-23 02:48:26,893 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 69/100 | Train Loss: 0.0111 | Val rms_score: 0.8614
247
+ 2025-09-23 02:48:29,434 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 70/100 | Train Loss: 0.0115 | Val rms_score: 0.8567
248
+ 2025-09-23 02:48:32,014 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 71/100 | Train Loss: 0.0111 | Val rms_score: 0.8735
249
+ 2025-09-23 02:48:34,807 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 72/100 | Train Loss: 0.0102 | Val rms_score: 0.8556
250
+ 2025-09-23 02:48:37,411 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 73/100 | Train Loss: 0.0100 | Val rms_score: 0.8746
251
+ 2025-09-23 02:48:40,037 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 74/100 | Train Loss: 0.0094 | Val rms_score: 0.8709
252
+ 2025-09-23 02:48:42,663 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 75/100 | Train Loss: 0.0093 | Val rms_score: 0.8544
253
+ 2025-09-23 02:48:45,218 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 76/100 | Train Loss: 0.0095 | Val rms_score: 0.8768
254
+ 2025-09-23 02:48:48,105 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 77/100 | Train Loss: 0.0094 | Val rms_score: 0.8634
255
+ 2025-09-23 02:48:50,619 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 78/100 | Train Loss: 0.0097 | Val rms_score: 0.8609
256
+ 2025-09-23 02:48:53,212 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 79/100 | Train Loss: 0.0113 | Val rms_score: 0.8625
257
+ 2025-09-23 02:48:55,806 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 80/100 | Train Loss: 0.0172 | Val rms_score: 0.8668
258
+ 2025-09-23 02:48:58,335 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 81/100 | Train Loss: 0.0126 | Val rms_score: 0.8667
259
+ 2025-09-23 02:49:01,220 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 82/100 | Train Loss: 0.0111 | Val rms_score: 0.8392
260
+ 2025-09-23 02:49:03,606 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 83/100 | Train Loss: 0.0090 | Val rms_score: 0.8606
261
+ 2025-09-23 02:49:05,718 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 84/100 | Train Loss: 0.0090 | Val rms_score: 0.8561
262
+ 2025-09-23 02:49:07,997 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 85/100 | Train Loss: 0.0089 | Val rms_score: 0.8584
263
+ 2025-09-23 02:49:10,502 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 86/100 | Train Loss: 0.0100 | Val rms_score: 0.8652
264
+ 2025-09-23 02:49:13,236 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 87/100 | Train Loss: 0.0135 | Val rms_score: 0.8760
265
+ 2025-09-23 02:49:15,744 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 88/100 | Train Loss: 0.0098 | Val rms_score: 0.8770
266
+ 2025-09-23 02:49:18,325 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 89/100 | Train Loss: 0.0090 | Val rms_score: 0.8720
267
+ 2025-09-23 02:49:20,922 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 90/100 | Train Loss: 0.0087 | Val rms_score: 0.8687
268
+ 2025-09-23 02:49:23,454 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 91/100 | Train Loss: 0.0089 | Val rms_score: 0.8764
269
+ 2025-09-23 02:49:26,278 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 92/100 | Train Loss: 0.0087 | Val rms_score: 0.8747
270
+ 2025-09-23 02:49:28,847 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 93/100 | Train Loss: 0.0085 | Val rms_score: 0.8824
271
+ 2025-09-23 02:49:31,453 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 94/100 | Train Loss: 0.0092 | Val rms_score: 0.8616
272
+ 2025-09-23 02:49:34,057 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 95/100 | Train Loss: 0.0090 | Val rms_score: 0.8689
273
+ 2025-09-23 02:49:36,689 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 96/100 | Train Loss: 0.0089 | Val rms_score: 0.8820
274
+ 2025-09-23 02:49:39,545 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 97/100 | Train Loss: 0.0080 | Val rms_score: 0.8636
275
+ 2025-09-23 02:49:42,051 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 98/100 | Train Loss: 0.0080 | Val rms_score: 0.8688
276
+ 2025-09-23 02:49:44,606 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 99/100 | Train Loss: 0.0084 | Val rms_score: 0.8678
277
+ 2025-09-23 02:49:47,114 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 100/100 | Train Loss: 0.0085 | Val rms_score: 0.8680
278
+ 2025-09-23 02:49:47,518 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Test rms_score: 0.8190
279
+ 2025-09-23 02:49:47,823 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Starting triplicate run 3 for dataset delaney at 2025-09-23_02-49-47
280
+ 2025-09-23 02:49:50,191 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 1/100 | Train Loss: 0.4375 | Val rms_score: 1.1555
281
+ 2025-09-23 02:49:50,191 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 15
282
+ 2025-09-23 02:49:50,693 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 1 with val rms_score: 1.1555
283
+ 2025-09-23 02:49:53,212 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 2/100 | Train Loss: 0.1396 | Val rms_score: 1.0063
284
+ 2025-09-23 02:49:53,377 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 30
285
+ 2025-09-23 02:49:53,879 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 2 with val rms_score: 1.0063
286
+ 2025-09-23 02:49:56,471 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 3/100 | Train Loss: 0.1005 | Val rms_score: 0.9937
287
+ 2025-09-23 02:49:56,643 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 45
288
+ 2025-09-23 02:49:57,142 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 3 with val rms_score: 0.9937
289
+ 2025-09-23 02:49:59,659 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 4/100 | Train Loss: 0.0792 | Val rms_score: 0.9603
290
+ 2025-09-23 02:49:59,828 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 60
291
+ 2025-09-23 02:50:00,331 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 4 with val rms_score: 0.9603
292
+ 2025-09-23 02:50:02,850 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 5/100 | Train Loss: 0.0740 | Val rms_score: 0.9567
293
+ 2025-09-23 02:50:03,019 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 75
294
+ 2025-09-23 02:50:03,522 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 5 with val rms_score: 0.9567
295
+ 2025-09-23 02:50:05,952 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 6/100 | Train Loss: 0.0620 | Val rms_score: 0.9367
296
+ 2025-09-23 02:50:06,393 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 90
297
+ 2025-09-23 02:50:06,902 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 6 with val rms_score: 0.9367
298
+ 2025-09-23 02:50:09,368 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 7/100 | Train Loss: 0.0490 | Val rms_score: 0.9225
299
+ 2025-09-23 02:50:09,535 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 105
300
+ 2025-09-23 02:50:10,044 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 7 with val rms_score: 0.9225
301
+ 2025-09-23 02:50:12,519 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 8/100 | Train Loss: 0.0547 | Val rms_score: 0.9042
302
+ 2025-09-23 02:50:12,689 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 120
303
+ 2025-09-23 02:50:13,190 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 8 with val rms_score: 0.9042
304
+ 2025-09-23 02:50:15,700 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 9/100 | Train Loss: 0.0505 | Val rms_score: 0.8972
305
+ 2025-09-23 02:50:15,887 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 135
306
+ 2025-09-23 02:50:16,397 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 9 with val rms_score: 0.8972
307
+ 2025-09-23 02:50:18,523 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 10/100 | Train Loss: 0.0469 | Val rms_score: 0.8759
308
+ 2025-09-23 02:50:18,690 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 150
309
+ 2025-09-23 02:50:19,195 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 10 with val rms_score: 0.8759
310
+ 2025-09-23 02:50:21,465 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 11/100 | Train Loss: 0.0440 | Val rms_score: 0.8866
311
+ 2025-09-23 02:50:24,267 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 12/100 | Train Loss: 0.0396 | Val rms_score: 0.8654
312
+ 2025-09-23 02:50:24,433 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 180
313
+ 2025-09-23 02:50:24,939 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 12 with val rms_score: 0.8654
314
+ 2025-09-23 02:50:27,464 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 13/100 | Train Loss: 0.0375 | Val rms_score: 0.8610
315
+ 2025-09-23 02:50:27,642 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 195
316
+ 2025-09-23 02:50:28,145 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 13 with val rms_score: 0.8610
317
+ 2025-09-23 02:50:30,735 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 14/100 | Train Loss: 0.0322 | Val rms_score: 0.8591
318
+ 2025-09-23 02:50:30,902 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 210
319
+ 2025-09-23 02:50:31,403 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 14 with val rms_score: 0.8591
320
+ 2025-09-23 02:50:33,947 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 15/100 | Train Loss: 0.0339 | Val rms_score: 0.8729
321
+ 2025-09-23 02:50:36,546 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 16/100 | Train Loss: 0.0336 | Val rms_score: 0.8723
322
+ 2025-09-23 02:50:39,362 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 17/100 | Train Loss: 0.0318 | Val rms_score: 0.8572
323
+ 2025-09-23 02:50:39,532 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 255
324
+ 2025-09-23 02:50:40,046 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 17 with val rms_score: 0.8572
325
+ 2025-09-23 02:50:42,637 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 18/100 | Train Loss: 0.0316 | Val rms_score: 0.8488
326
+ 2025-09-23 02:50:42,816 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 270
327
+ 2025-09-23 02:50:43,315 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 18 with val rms_score: 0.8488
328
+ 2025-09-23 02:50:45,886 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 19/100 | Train Loss: 0.0276 | Val rms_score: 0.8610
329
+ 2025-09-23 02:50:48,491 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 20/100 | Train Loss: 0.0268 | Val rms_score: 0.8490
330
+ 2025-09-23 02:50:51,038 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 21/100 | Train Loss: 0.0270 | Val rms_score: 0.8514
331
+ 2025-09-23 02:50:53,877 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 22/100 | Train Loss: 0.0255 | Val rms_score: 0.8350
332
+ 2025-09-23 02:50:54,054 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Global step of best model: 330
333
+ 2025-09-23 02:50:54,563 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Best model saved at epoch 22 with val rms_score: 0.8350
334
+ 2025-09-23 02:50:57,125 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 23/100 | Train Loss: 0.0306 | Val rms_score: 0.8625
335
+ 2025-09-23 02:50:59,702 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 24/100 | Train Loss: 0.0260 | Val rms_score: 0.8454
336
+ 2025-09-23 02:51:02,223 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 25/100 | Train Loss: 0.0243 | Val rms_score: 0.8508
337
+ 2025-09-23 02:51:04,717 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 26/100 | Train Loss: 0.0237 | Val rms_score: 0.8420
338
+ 2025-09-23 02:51:07,485 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 27/100 | Train Loss: 0.0230 | Val rms_score: 0.8435
339
+ 2025-09-23 02:51:09,946 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 28/100 | Train Loss: 0.0214 | Val rms_score: 0.8487
340
+ 2025-09-23 02:51:12,530 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 29/100 | Train Loss: 0.0198 | Val rms_score: 0.8376
341
+ 2025-09-23 02:51:15,093 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 30/100 | Train Loss: 0.0186 | Val rms_score: 0.8475
342
+ 2025-09-23 02:51:17,720 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 31/100 | Train Loss: 0.0191 | Val rms_score: 0.8616
343
+ 2025-09-23 02:51:20,522 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 32/100 | Train Loss: 0.0216 | Val rms_score: 0.8479
344
+ 2025-09-23 02:51:23,104 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 33/100 | Train Loss: 0.0193 | Val rms_score: 0.8464
345
+ 2025-09-23 02:51:25,557 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 34/100 | Train Loss: 0.0193 | Val rms_score: 0.8494
346
+ 2025-09-23 02:51:28,195 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 35/100 | Train Loss: 0.0197 | Val rms_score: 0.8504
347
+ 2025-09-23 02:51:30,427 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 36/100 | Train Loss: 0.0181 | Val rms_score: 0.8410
348
+ 2025-09-23 02:51:32,923 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 37/100 | Train Loss: 0.0176 | Val rms_score: 0.8758
349
+ 2025-09-23 02:51:35,166 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 38/100 | Train Loss: 0.0154 | Val rms_score: 0.8369
350
+ 2025-09-23 02:51:37,794 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 39/100 | Train Loss: 0.0152 | Val rms_score: 0.8589
351
+ 2025-09-23 02:51:40,446 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 40/100 | Train Loss: 0.0150 | Val rms_score: 0.8564
352
+ 2025-09-23 02:51:42,813 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 41/100 | Train Loss: 0.0155 | Val rms_score: 0.8442
353
+ 2025-09-23 02:51:45,690 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 42/100 | Train Loss: 0.0169 | Val rms_score: 0.8731
354
+ 2025-09-23 02:51:48,315 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 43/100 | Train Loss: 0.0137 | Val rms_score: 0.8502
355
+ 2025-09-23 02:51:50,911 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 44/100 | Train Loss: 0.0135 | Val rms_score: 0.8559
356
+ 2025-09-23 02:51:53,495 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 45/100 | Train Loss: 0.0130 | Val rms_score: 0.8512
357
+ 2025-09-23 02:51:56,029 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 46/100 | Train Loss: 0.0134 | Val rms_score: 0.8518
358
+ 2025-09-23 02:51:58,802 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 47/100 | Train Loss: 0.0156 | Val rms_score: 0.8550
359
+ 2025-09-23 02:52:01,356 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 48/100 | Train Loss: 0.0126 | Val rms_score: 0.8520
360
+ 2025-09-23 02:52:03,925 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 49/100 | Train Loss: 0.0144 | Val rms_score: 0.8492
361
+ 2025-09-23 02:52:06,557 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 50/100 | Train Loss: 0.0146 | Val rms_score: 0.8740
362
+ 2025-09-23 02:52:09,144 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 51/100 | Train Loss: 0.0147 | Val rms_score: 0.8724
363
+ 2025-09-23 02:52:12,016 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 52/100 | Train Loss: 0.0128 | Val rms_score: 0.8593
364
+ 2025-09-23 02:52:14,605 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 53/100 | Train Loss: 0.0136 | Val rms_score: 0.8739
365
+ 2025-09-23 02:52:17,192 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 54/100 | Train Loss: 0.0123 | Val rms_score: 0.8538
366
+ 2025-09-23 02:52:19,776 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 55/100 | Train Loss: 0.0123 | Val rms_score: 0.8728
367
+ 2025-09-23 02:52:22,397 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 56/100 | Train Loss: 0.0124 | Val rms_score: 0.8705
368
+ 2025-09-23 02:52:25,257 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 57/100 | Train Loss: 0.0138 | Val rms_score: 0.8456
369
+ 2025-09-23 02:52:27,771 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 58/100 | Train Loss: 0.0156 | Val rms_score: 0.8611
370
+ 2025-09-23 02:52:30,225 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 59/100 | Train Loss: 0.0132 | Val rms_score: 0.8639
371
+ 2025-09-23 02:52:32,702 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 60/100 | Train Loss: 0.0111 | Val rms_score: 0.8536
372
+ 2025-09-23 02:52:35,175 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 61/100 | Train Loss: 0.0103 | Val rms_score: 0.8722
373
+ 2025-09-23 02:52:37,545 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 62/100 | Train Loss: 0.0109 | Val rms_score: 0.8696
374
+ 2025-09-23 02:52:40,047 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 63/100 | Train Loss: 0.0109 | Val rms_score: 0.8621
375
+ 2025-09-23 02:52:42,454 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 64/100 | Train Loss: 0.0107 | Val rms_score: 0.8643
376
+ 2025-09-23 02:52:44,627 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 65/100 | Train Loss: 0.0100 | Val rms_score: 0.8569
377
+ 2025-09-23 02:52:46,914 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 66/100 | Train Loss: 0.0103 | Val rms_score: 0.8686
378
+ 2025-09-23 02:52:50,254 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 67/100 | Train Loss: 0.0102 | Val rms_score: 0.8612
379
+ 2025-09-23 02:52:52,901 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 68/100 | Train Loss: 0.0094 | Val rms_score: 0.8589
380
+ 2025-09-23 02:52:55,520 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 69/100 | Train Loss: 0.0087 | Val rms_score: 0.8585
381
+ 2025-09-23 02:52:58,147 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 70/100 | Train Loss: 0.0091 | Val rms_score: 0.8606
382
+ 2025-09-23 02:53:00,813 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 71/100 | Train Loss: 0.0092 | Val rms_score: 0.8657
383
+ 2025-09-23 02:53:03,603 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 72/100 | Train Loss: 0.0104 | Val rms_score: 0.8727
384
+ 2025-09-23 02:53:06,158 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 73/100 | Train Loss: 0.0107 | Val rms_score: 0.8476
385
+ 2025-09-23 02:53:08,722 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 74/100 | Train Loss: 0.0098 | Val rms_score: 0.8778
386
+ 2025-09-23 02:53:11,261 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 75/100 | Train Loss: 0.0092 | Val rms_score: 0.8550
387
+ 2025-09-23 02:53:13,795 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 76/100 | Train Loss: 0.0091 | Val rms_score: 0.8711
388
+ 2025-09-23 02:53:16,610 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 77/100 | Train Loss: 0.0091 | Val rms_score: 0.8592
389
+ 2025-09-23 02:53:19,167 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 78/100 | Train Loss: 0.0085 | Val rms_score: 0.8624
390
+ 2025-09-23 02:53:21,691 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 79/100 | Train Loss: 0.0085 | Val rms_score: 0.8599
391
+ 2025-09-23 02:53:24,211 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 80/100 | Train Loss: 0.0084 | Val rms_score: 0.8651
392
+ 2025-09-23 02:53:26,806 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 81/100 | Train Loss: 0.0088 | Val rms_score: 0.8681
393
+ 2025-09-23 02:53:29,740 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 82/100 | Train Loss: 0.0090 | Val rms_score: 0.8668
394
+ 2025-09-23 02:53:32,337 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 83/100 | Train Loss: 0.0081 | Val rms_score: 0.8662
395
+ 2025-09-23 02:53:34,902 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 84/100 | Train Loss: 0.0082 | Val rms_score: 0.8645
396
+ 2025-09-23 02:53:37,468 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 85/100 | Train Loss: 0.0085 | Val rms_score: 0.8599
397
+ 2025-09-23 02:53:40,077 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 86/100 | Train Loss: 0.0085 | Val rms_score: 0.8646
398
+ 2025-09-23 02:53:42,825 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 87/100 | Train Loss: 0.0086 | Val rms_score: 0.8668
399
+ 2025-09-23 02:53:45,393 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 88/100 | Train Loss: 0.0090 | Val rms_score: 0.8645
400
+ 2025-09-23 02:53:47,842 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 89/100 | Train Loss: 0.0087 | Val rms_score: 0.8715
401
+ 2025-09-23 02:53:50,206 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 90/100 | Train Loss: 0.0087 | Val rms_score: 0.8732
402
+ 2025-09-23 02:53:52,734 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 91/100 | Train Loss: 0.0084 | Val rms_score: 0.8720
403
+ 2025-09-23 02:53:55,388 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 92/100 | Train Loss: 0.0079 | Val rms_score: 0.8629
404
+ 2025-09-23 02:53:57,847 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 93/100 | Train Loss: 0.0079 | Val rms_score: 0.8666
405
+ 2025-09-23 02:54:00,127 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 94/100 | Train Loss: 0.0081 | Val rms_score: 0.8832
406
+ 2025-09-23 02:54:02,384 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 95/100 | Train Loss: 0.0074 | Val rms_score: 0.8638
407
+ 2025-09-23 02:54:04,971 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 96/100 | Train Loss: 0.0078 | Val rms_score: 0.8654
408
+ 2025-09-23 02:54:07,746 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 97/100 | Train Loss: 0.0070 | Val rms_score: 0.8736
409
+ 2025-09-23 02:54:10,325 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 98/100 | Train Loss: 0.0072 | Val rms_score: 0.8704
410
+ 2025-09-23 02:54:12,767 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 99/100 | Train Loss: 0.0077 | Val rms_score: 0.8697
411
+ 2025-09-23 02:54:15,292 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Epoch 100/100 | Train Loss: 0.0075 | Val rms_score: 0.8601
412
+ 2025-09-23 02:54:15,698 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Test rms_score: 0.8005
413
+ 2025-09-23 02:54:15,987 - logs_modchembert_delaney_epochs100_batch_size64 - INFO - Final Triplicate Test Results — Avg rms_score: 0.8158, Std Dev: 0.0115
logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_freesolv_epochs100_batch_size32_20250923_025415.log ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 02:54:15,989 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Running benchmark for dataset: freesolv
2
+ 2025-09-23 02:54:15,989 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - dataset: freesolv, tasks: ['y'], epochs: 100, learning rate: 3e-05, transform: True
3
+ 2025-09-23 02:54:16,009 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset freesolv at 2025-09-23_02-54-16
4
+ 2025-09-23 02:54:18,284 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.4485 | Val rms_score: 1.0926
5
+ 2025-09-23 02:54:18,284 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 17
6
+ 2025-09-23 02:54:18,804 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 1.0926
7
+ 2025-09-23 02:54:21,328 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1811 | Val rms_score: 1.0750
8
+ 2025-09-23 02:54:21,497 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 34
9
+ 2025-09-23 02:54:22,006 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 1.0750
10
+ 2025-09-23 02:54:24,465 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1232 | Val rms_score: 0.9377
11
+ 2025-09-23 02:54:24,634 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 51
12
+ 2025-09-23 02:54:25,173 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 0.9377
13
+ 2025-09-23 02:54:27,680 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0974 | Val rms_score: 0.8618
14
+ 2025-09-23 02:54:27,861 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 68
15
+ 2025-09-23 02:54:28,388 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val rms_score: 0.8618
16
+ 2025-09-23 02:54:30,899 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0795 | Val rms_score: 0.8270
17
+ 2025-09-23 02:54:31,067 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 85
18
+ 2025-09-23 02:54:31,583 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 0.8270
19
+ 2025-09-23 02:54:34,092 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0287 | Val rms_score: 0.8375
20
+ 2025-09-23 02:54:36,904 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0407 | Val rms_score: 0.8378
21
+ 2025-09-23 02:54:39,410 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0370 | Val rms_score: 0.8247
22
+ 2025-09-23 02:54:39,591 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 136
23
+ 2025-09-23 02:54:40,106 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 8 with val rms_score: 0.8247
24
+ 2025-09-23 02:54:42,560 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0331 | Val rms_score: 0.8397
25
+ 2025-09-23 02:54:45,108 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0303 | Val rms_score: 0.8260
26
+ 2025-09-23 02:54:47,657 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0574 | Val rms_score: 0.7297
27
+ 2025-09-23 02:54:48,095 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 187
28
+ 2025-09-23 02:54:48,602 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 11 with val rms_score: 0.7297
29
+ 2025-09-23 02:54:51,082 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.4707 | Val rms_score: 1.0318
30
+ 2025-09-23 02:54:53,462 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.1498 | Val rms_score: 0.9555
31
+ 2025-09-23 02:54:55,938 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0928 | Val rms_score: 0.9122
32
+ 2025-09-23 02:54:58,351 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0570 | Val rms_score: 0.8612
33
+ 2025-09-23 02:55:00,766 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0457 | Val rms_score: 0.8743
34
+ 2025-09-23 02:55:03,461 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0368 | Val rms_score: 0.8688
35
+ 2025-09-23 02:55:05,861 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0301 | Val rms_score: 0.8608
36
+ 2025-09-23 02:55:07,964 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0324 | Val rms_score: 0.8651
37
+ 2025-09-23 02:55:10,222 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0301 | Val rms_score: 0.8622
38
+ 2025-09-23 02:55:12,723 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0310 | Val rms_score: 0.8614
39
+ 2025-09-23 02:55:15,366 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0285 | Val rms_score: 0.8673
40
+ 2025-09-23 02:55:17,832 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0273 | Val rms_score: 0.8601
41
+ 2025-09-23 02:55:20,293 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0356 | Val rms_score: 0.8589
42
+ 2025-09-23 02:55:22,748 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0237 | Val rms_score: 0.8684
43
+ 2025-09-23 02:55:25,272 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0222 | Val rms_score: 0.8581
44
+ 2025-09-23 02:55:28,199 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0226 | Val rms_score: 0.8625
45
+ 2025-09-23 02:55:30,682 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0215 | Val rms_score: 0.8589
46
+ 2025-09-23 02:55:33,204 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0194 | Val rms_score: 0.8571
47
+ 2025-09-23 02:55:35,674 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0187 | Val rms_score: 0.8642
48
+ 2025-09-23 02:55:38,188 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0257 | Val rms_score: 0.8851
49
+ 2025-09-23 02:55:40,979 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0317 | Val rms_score: 0.8889
50
+ 2025-09-23 02:55:43,390 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0263 | Val rms_score: 0.8751
51
+ 2025-09-23 02:55:45,852 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0232 | Val rms_score: 0.8491
52
+ 2025-09-23 02:55:48,281 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0173 | Val rms_score: 0.8536
53
+ 2025-09-23 02:55:50,727 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0200 | Val rms_score: 0.8592
54
+ 2025-09-23 02:55:53,472 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0216 | Val rms_score: 0.8714
55
+ 2025-09-23 02:55:55,933 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0172 | Val rms_score: 0.8501
56
+ 2025-09-23 02:55:58,349 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0172 | Val rms_score: 0.8457
57
+ 2025-09-23 02:56:00,779 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0160 | Val rms_score: 0.8430
58
+ 2025-09-23 02:56:03,059 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0146 | Val rms_score: 0.8384
59
+ 2025-09-23 02:56:05,851 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0144 | Val rms_score: 0.8373
60
+ 2025-09-23 02:56:08,316 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0248 | Val rms_score: 0.8799
61
+ 2025-09-23 02:56:10,743 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0499 | Val rms_score: 0.8355
62
+ 2025-09-23 02:56:13,234 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0287 | Val rms_score: 0.8558
63
+ 2025-09-23 02:56:15,380 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0215 | Val rms_score: 0.8324
64
+ 2025-09-23 02:56:18,061 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0163 | Val rms_score: 0.8215
65
+ 2025-09-23 02:56:20,582 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0164 | Val rms_score: 0.8250
66
+ 2025-09-23 02:56:23,078 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0164 | Val rms_score: 0.8277
67
+ 2025-09-23 02:56:25,583 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0125 | Val rms_score: 0.8242
68
+ 2025-09-23 02:56:28,179 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0131 | Val rms_score: 0.8174
69
+ 2025-09-23 02:56:30,923 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0223 | Val rms_score: 0.8367
70
+ 2025-09-23 02:56:33,441 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0070 | Val rms_score: 0.8342
71
+ 2025-09-23 02:56:35,838 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0124 | Val rms_score: 0.8261
72
+ 2025-09-23 02:56:38,286 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0133 | Val rms_score: 0.8349
73
+ 2025-09-23 02:56:40,721 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0130 | Val rms_score: 0.8346
74
+ 2025-09-23 02:56:43,375 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0115 | Val rms_score: 0.8326
75
+ 2025-09-23 02:56:45,804 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0112 | Val rms_score: 0.8220
76
+ 2025-09-23 02:56:49,190 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0112 | Val rms_score: 0.8197
77
+ 2025-09-23 02:56:51,674 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0125 | Val rms_score: 0.8299
78
+ 2025-09-23 02:56:54,217 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0107 | Val rms_score: 0.8354
79
+ 2025-09-23 02:56:56,970 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0103 | Val rms_score: 0.8241
80
+ 2025-09-23 02:56:59,523 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0097 | Val rms_score: 0.8222
81
+ 2025-09-23 02:57:02,033 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0093 | Val rms_score: 0.8295
82
+ 2025-09-23 02:57:04,580 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0070 | Val rms_score: 0.8306
83
+ 2025-09-23 02:57:07,077 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0098 | Val rms_score: 0.8264
84
+ 2025-09-23 02:57:09,675 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0099 | Val rms_score: 0.8285
85
+ 2025-09-23 02:57:12,130 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0083 | Val rms_score: 0.8253
86
+ 2025-09-23 02:57:14,631 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0083 | Val rms_score: 0.8326
87
+ 2025-09-23 02:57:17,138 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0077 | Val rms_score: 0.8273
88
+ 2025-09-23 02:57:19,586 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0127 | Val rms_score: 0.8287
89
+ 2025-09-23 02:57:22,184 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0080 | Val rms_score: 0.8301
90
+ 2025-09-23 02:57:24,390 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0075 | Val rms_score: 0.8294
91
+ 2025-09-23 02:57:26,600 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0083 | Val rms_score: 0.8297
92
+ 2025-09-23 02:57:29,121 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0156 | Val rms_score: 0.8841
93
+ 2025-09-23 02:57:31,625 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0425 | Val rms_score: 0.9610
94
+ 2025-09-23 02:57:34,360 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0190 | Val rms_score: 0.9405
95
+ 2025-09-23 02:57:36,743 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0149 | Val rms_score: 0.9254
96
+ 2025-09-23 02:57:39,224 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0134 | Val rms_score: 0.9125
97
+ 2025-09-23 02:57:41,699 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0131 | Val rms_score: 0.9131
98
+ 2025-09-23 02:57:44,202 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0102 | Val rms_score: 0.9082
99
+ 2025-09-23 02:57:46,925 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0097 | Val rms_score: 0.8985
100
+ 2025-09-23 02:57:49,397 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0074 | Val rms_score: 0.8979
101
+ 2025-09-23 02:57:51,855 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0097 | Val rms_score: 0.9002
102
+ 2025-09-23 02:57:54,337 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0096 | Val rms_score: 0.8960
103
+ 2025-09-23 02:57:56,787 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0090 | Val rms_score: 0.8925
104
+ 2025-09-23 02:57:59,532 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0081 | Val rms_score: 0.8938
105
+ 2025-09-23 02:58:01,927 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0091 | Val rms_score: 0.8964
106
+ 2025-09-23 02:58:04,341 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0088 | Val rms_score: 0.8911
107
+ 2025-09-23 02:58:06,819 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0090 | Val rms_score: 0.8812
108
+ 2025-09-23 02:58:09,263 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0088 | Val rms_score: 0.8851
109
+ 2025-09-23 02:58:12,006 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0080 | Val rms_score: 0.8755
110
+ 2025-09-23 02:58:14,394 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0079 | Val rms_score: 0.8861
111
+ 2025-09-23 02:58:16,869 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0073 | Val rms_score: 0.8851
112
+ 2025-09-23 02:58:19,349 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0076 | Val rms_score: 0.8853
113
+ 2025-09-23 02:58:21,905 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0094 | Val rms_score: 0.8783
114
+ 2025-09-23 02:58:24,690 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0141 | Val rms_score: 0.8819
115
+ 2025-09-23 02:58:27,203 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0107 | Val rms_score: 0.8767
116
+ 2025-09-23 02:58:29,717 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0081 | Val rms_score: 0.8752
117
+ 2025-09-23 02:58:31,852 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0072 | Val rms_score: 0.8767
118
+ 2025-09-23 02:58:32,172 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Test rms_score: 0.4878
119
+ 2025-09-23 02:58:32,473 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset freesolv at 2025-09-23_02-58-32
120
+ 2025-09-23 02:58:34,476 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.4118 | Val rms_score: 1.0664
121
+ 2025-09-23 02:58:34,476 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 17
122
+ 2025-09-23 02:58:35,022 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 1.0664
123
+ 2025-09-23 02:58:37,440 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.1517 | Val rms_score: 1.0064
124
+ 2025-09-23 02:58:37,607 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 34
125
+ 2025-09-23 02:58:38,112 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 1.0064
126
+ 2025-09-23 02:58:40,473 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.0979 | Val rms_score: 0.8827
127
+ 2025-09-23 02:58:40,640 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 51
128
+ 2025-09-23 02:58:41,145 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 0.8827
129
+ 2025-09-23 02:58:43,558 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0634 | Val rms_score: 0.8355
130
+ 2025-09-23 02:58:43,726 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 68
131
+ 2025-09-23 02:58:44,245 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val rms_score: 0.8355
132
+ 2025-09-23 02:58:46,643 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0542 | Val rms_score: 0.7822
133
+ 2025-09-23 02:58:46,815 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 85
134
+ 2025-09-23 02:58:47,325 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 0.7822
135
+ 2025-09-23 02:58:49,793 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0388 | Val rms_score: 0.8209
136
+ 2025-09-23 02:58:52,627 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0361 | Val rms_score: 0.8061
137
+ 2025-09-23 02:58:55,051 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0326 | Val rms_score: 0.8124
138
+ 2025-09-23 02:58:57,520 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0268 | Val rms_score: 0.8126
139
+ 2025-09-23 02:59:00,017 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0272 | Val rms_score: 0.8039
140
+ 2025-09-23 02:59:02,572 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0245 | Val rms_score: 0.8150
141
+ 2025-09-23 02:59:05,337 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0166 | Val rms_score: 0.8233
142
+ 2025-09-23 02:59:07,807 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0262 | Val rms_score: 0.8139
143
+ 2025-09-23 02:59:10,356 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0236 | Val rms_score: 0.8102
144
+ 2025-09-23 02:59:12,831 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0272 | Val rms_score: 0.7787
145
+ 2025-09-23 02:59:13,000 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 255
146
+ 2025-09-23 02:59:13,506 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 15 with val rms_score: 0.7787
147
+ 2025-09-23 02:59:16,059 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0338 | Val rms_score: 0.7995
148
+ 2025-09-23 02:59:18,861 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0232 | Val rms_score: 0.8254
149
+ 2025-09-23 02:59:21,007 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0215 | Val rms_score: 0.8129
150
+ 2025-09-23 02:59:23,456 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0187 | Val rms_score: 0.8223
151
+ 2025-09-23 02:59:25,981 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0192 | Val rms_score: 0.8018
152
+ 2025-09-23 02:59:28,408 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0172 | Val rms_score: 0.8022
153
+ 2025-09-23 02:59:31,230 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0182 | Val rms_score: 0.8396
154
+ 2025-09-23 02:59:33,738 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0356 | Val rms_score: 0.7806
155
+ 2025-09-23 02:59:36,212 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0165 | Val rms_score: 0.8113
156
+ 2025-09-23 02:59:38,352 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0169 | Val rms_score: 0.8455
157
+ 2025-09-23 02:59:40,720 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0249 | Val rms_score: 0.7796
158
+ 2025-09-23 02:59:43,477 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0395 | Val rms_score: 0.7981
159
+ 2025-09-23 02:59:45,965 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0237 | Val rms_score: 0.8393
160
+ 2025-09-23 02:59:48,479 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0163 | Val rms_score: 0.8337
161
+ 2025-09-23 02:59:50,952 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0131 | Val rms_score: 0.8170
162
+ 2025-09-23 02:59:53,416 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0125 | Val rms_score: 0.8327
163
+ 2025-09-23 02:59:56,171 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0124 | Val rms_score: 0.8136
164
+ 2025-09-23 02:59:58,551 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0113 | Val rms_score: 0.8220
165
+ 2025-09-23 03:00:00,929 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0110 | Val rms_score: 0.8017
166
+ 2025-09-23 03:00:03,372 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0182 | Val rms_score: 0.8599
167
+ 2025-09-23 03:00:05,783 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0218 | Val rms_score: 0.7599
168
+ 2025-09-23 03:00:06,190 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 612
169
+ 2025-09-23 03:00:06,715 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 36 with val rms_score: 0.7599
170
+ 2025-09-23 03:00:09,227 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.1691 | Val rms_score: 0.9449
171
+ 2025-09-23 03:00:11,689 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.2629 | Val rms_score: 0.9760
172
+ 2025-09-23 03:00:14,170 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.1498 | Val rms_score: 1.0019
173
+ 2025-09-23 03:00:16,658 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0494 | Val rms_score: 0.8967
174
+ 2025-09-23 03:00:19,063 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0280 | Val rms_score: 0.8952
175
+ 2025-09-23 03:00:21,925 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0206 | Val rms_score: 0.8913
176
+ 2025-09-23 03:00:24,447 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0238 | Val rms_score: 0.8839
177
+ 2025-09-23 03:00:26,589 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0279 | Val rms_score: 0.9059
178
+ 2025-09-23 03:00:29,022 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0205 | Val rms_score: 0.8975
179
+ 2025-09-23 03:00:31,456 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0163 | Val rms_score: 0.8848
180
+ 2025-09-23 03:00:34,260 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0149 | Val rms_score: 0.8819
181
+ 2025-09-23 03:00:36,705 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0115 | Val rms_score: 0.8799
182
+ 2025-09-23 03:00:39,181 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0116 | Val rms_score: 0.8833
183
+ 2025-09-23 03:00:41,680 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0111 | Val rms_score: 0.8832
184
+ 2025-09-23 03:00:44,152 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0105 | Val rms_score: 0.8861
185
+ 2025-09-23 03:00:46,612 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0126 | Val rms_score: 0.8867
186
+ 2025-09-23 03:00:48,809 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0076 | Val rms_score: 0.8833
187
+ 2025-09-23 03:00:51,431 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0094 | Val rms_score: 0.8860
188
+ 2025-09-23 03:00:53,762 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0089 | Val rms_score: 0.8852
189
+ 2025-09-23 03:00:56,310 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0098 | Val rms_score: 0.8818
190
+ 2025-09-23 03:00:59,084 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0083 | Val rms_score: 0.8775
191
+ 2025-09-23 03:01:01,600 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0116 | Val rms_score: 0.8850
192
+ 2025-09-23 03:01:05,089 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0089 | Val rms_score: 0.8844
193
+ 2025-09-23 03:01:07,438 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0106 | Val rms_score: 0.8794
194
+ 2025-09-23 03:01:09,825 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0082 | Val rms_score: 0.8796
195
+ 2025-09-23 03:01:12,520 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0087 | Val rms_score: 0.8757
196
+ 2025-09-23 03:01:14,969 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0080 | Val rms_score: 0.8765
197
+ 2025-09-23 03:01:17,298 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0076 | Val rms_score: 0.8764
198
+ 2025-09-23 03:01:19,793 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0078 | Val rms_score: 0.8744
199
+ 2025-09-23 03:01:22,320 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0172 | Val rms_score: 0.8604
200
+ 2025-09-23 03:01:25,042 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0448 | Val rms_score: 0.8714
201
+ 2025-09-23 03:01:27,504 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0161 | Val rms_score: 0.8655
202
+ 2025-09-23 03:01:29,967 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0108 | Val rms_score: 0.8739
203
+ 2025-09-23 03:01:32,370 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0081 | Val rms_score: 0.8784
204
+ 2025-09-23 03:01:34,909 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0135 | Val rms_score: 0.8923
205
+ 2025-09-23 03:01:37,654 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0167 | Val rms_score: 0.9067
206
+ 2025-09-23 03:01:40,203 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0128 | Val rms_score: 0.8928
207
+ 2025-09-23 03:01:42,727 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0096 | Val rms_score: 0.9002
208
+ 2025-09-23 03:01:45,255 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0087 | Val rms_score: 0.8860
209
+ 2025-09-23 03:01:47,777 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0090 | Val rms_score: 0.8907
210
+ 2025-09-23 03:01:50,587 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0094 | Val rms_score: 0.8854
211
+ 2025-09-23 03:01:53,024 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0101 | Val rms_score: 0.8766
212
+ 2025-09-23 03:01:55,212 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0077 | Val rms_score: 0.8786
213
+ 2025-09-23 03:01:57,423 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0070 | Val rms_score: 0.8786
214
+ 2025-09-23 03:01:59,866 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0076 | Val rms_score: 0.8705
215
+ 2025-09-23 03:02:02,561 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0063 | Val rms_score: 0.8665
216
+ 2025-09-23 03:02:05,003 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0062 | Val rms_score: 0.8676
217
+ 2025-09-23 03:02:07,412 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0064 | Val rms_score: 0.8686
218
+ 2025-09-23 03:02:09,823 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0067 | Val rms_score: 0.8692
219
+ 2025-09-23 03:02:12,287 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0060 | Val rms_score: 0.8742
220
+ 2025-09-23 03:02:15,088 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0066 | Val rms_score: 0.8707
221
+ 2025-09-23 03:02:17,556 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0060 | Val rms_score: 0.8673
222
+ 2025-09-23 03:02:20,016 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0064 | Val rms_score: 0.8757
223
+ 2025-09-23 03:02:22,489 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0079 | Val rms_score: 0.8727
224
+ 2025-09-23 03:02:24,974 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0064 | Val rms_score: 0.8781
225
+ 2025-09-23 03:02:27,746 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0070 | Val rms_score: 0.8738
226
+ 2025-09-23 03:02:30,328 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0053 | Val rms_score: 0.8726
227
+ 2025-09-23 03:02:32,774 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0054 | Val rms_score: 0.8718
228
+ 2025-09-23 03:02:35,245 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0061 | Val rms_score: 0.8697
229
+ 2025-09-23 03:02:37,786 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0054 | Val rms_score: 0.8729
230
+ 2025-09-23 03:02:40,565 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0049 | Val rms_score: 0.8731
231
+ 2025-09-23 03:02:43,108 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0054 | Val rms_score: 0.8709
232
+ 2025-09-23 03:02:45,551 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0059 | Val rms_score: 0.8692
233
+ 2025-09-23 03:02:48,034 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0055 | Val rms_score: 0.8628
234
+ 2025-09-23 03:02:48,450 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Test rms_score: 0.4856
235
+ 2025-09-23 03:02:48,753 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset freesolv at 2025-09-23_03-02-48
236
+ 2025-09-23 03:02:50,972 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.5919 | Val rms_score: 1.0315
237
+ 2025-09-23 03:02:50,972 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 17
238
+ 2025-09-23 03:02:51,481 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 1.0315
239
+ 2025-09-23 03:02:54,020 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3107 | Val rms_score: 1.0931
240
+ 2025-09-23 03:02:56,454 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.1406 | Val rms_score: 0.9547
241
+ 2025-09-23 03:02:56,620 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 51
242
+ 2025-09-23 03:02:57,131 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 0.9547
243
+ 2025-09-23 03:02:59,616 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.0942 | Val rms_score: 0.9126
244
+ 2025-09-23 03:02:59,784 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 68
245
+ 2025-09-23 03:03:00,303 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val rms_score: 0.9126
246
+ 2025-09-23 03:03:02,550 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.0740 | Val rms_score: 0.8551
247
+ 2025-09-23 03:03:02,727 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 85
248
+ 2025-09-23 03:03:03,242 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 0.8551
249
+ 2025-09-23 03:03:05,546 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.0859 | Val rms_score: 0.8304
250
+ 2025-09-23 03:03:05,990 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 102
251
+ 2025-09-23 03:03:06,505 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val rms_score: 0.8304
252
+ 2025-09-23 03:03:09,087 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.0722 | Val rms_score: 0.8610
253
+ 2025-09-23 03:03:11,554 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.0896 | Val rms_score: 0.8493
254
+ 2025-09-23 03:03:13,990 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.0657 | Val rms_score: 0.8362
255
+ 2025-09-23 03:03:16,470 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.0616 | Val rms_score: 0.8274
256
+ 2025-09-23 03:03:16,642 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 170
257
+ 2025-09-23 03:03:17,156 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 10 with val rms_score: 0.8274
258
+ 2025-09-23 03:03:19,609 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0607 | Val rms_score: 0.8157
259
+ 2025-09-23 03:03:20,054 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 187
260
+ 2025-09-23 03:03:20,560 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 11 with val rms_score: 0.8157
261
+ 2025-09-23 03:03:23,087 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0337 | Val rms_score: 0.8341
262
+ 2025-09-23 03:03:25,588 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0503 | Val rms_score: 0.8411
263
+ 2025-09-23 03:03:28,074 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0749 | Val rms_score: 0.8248
264
+ 2025-09-23 03:03:30,613 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0462 | Val rms_score: 0.8379
265
+ 2025-09-23 03:03:33,186 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0368 | Val rms_score: 0.8237
266
+ 2025-09-23 03:03:35,910 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0319 | Val rms_score: 0.8329
267
+ 2025-09-23 03:03:38,310 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0413 | Val rms_score: 0.8377
268
+ 2025-09-23 03:03:40,668 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0358 | Val rms_score: 0.8136
269
+ 2025-09-23 03:03:40,838 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 323
270
+ 2025-09-23 03:03:41,355 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 19 with val rms_score: 0.8136
271
+ 2025-09-23 03:03:43,741 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0347 | Val rms_score: 0.8189
272
+ 2025-09-23 03:03:45,953 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0281 | Val rms_score: 0.8275
273
+ 2025-09-23 03:03:48,668 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0246 | Val rms_score: 0.8281
274
+ 2025-09-23 03:03:51,078 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0285 | Val rms_score: 0.8247
275
+ 2025-09-23 03:03:53,585 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0354 | Val rms_score: 0.8424
276
+ 2025-09-23 03:03:56,085 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0234 | Val rms_score: 0.8255
277
+ 2025-09-23 03:03:58,529 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0192 | Val rms_score: 0.8235
278
+ 2025-09-23 03:04:01,389 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0185 | Val rms_score: 0.8187
279
+ 2025-09-23 03:04:03,955 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0191 | Val rms_score: 0.8271
280
+ 2025-09-23 03:04:06,461 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0163 | Val rms_score: 0.8191
281
+ 2025-09-23 03:04:08,790 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0168 | Val rms_score: 0.8087
282
+ 2025-09-23 03:04:08,938 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 510
283
+ 2025-09-23 03:04:09,449 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 30 with val rms_score: 0.8087
284
+ 2025-09-23 03:04:11,598 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0169 | Val rms_score: 0.8156
285
+ 2025-09-23 03:04:14,378 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0160 | Val rms_score: 0.8180
286
+ 2025-09-23 03:04:16,861 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0152 | Val rms_score: 0.8130
287
+ 2025-09-23 03:04:19,402 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0145 | Val rms_score: 0.8157
288
+ 2025-09-23 03:04:21,797 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0127 | Val rms_score: 0.8191
289
+ 2025-09-23 03:04:24,323 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0145 | Val rms_score: 0.8225
290
+ 2025-09-23 03:04:27,148 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0140 | Val rms_score: 0.8103
291
+ 2025-09-23 03:04:29,673 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0192 | Val rms_score: 0.8036
292
+ 2025-09-23 03:04:29,846 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 646
293
+ 2025-09-23 03:04:30,354 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 38 with val rms_score: 0.8036
294
+ 2025-09-23 03:04:32,850 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0146 | Val rms_score: 0.8045
295
+ 2025-09-23 03:04:35,324 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0124 | Val rms_score: 0.8042
296
+ 2025-09-23 03:04:37,849 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0137 | Val rms_score: 0.8115
297
+ 2025-09-23 03:04:40,632 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0126 | Val rms_score: 0.8099
298
+ 2025-09-23 03:04:43,084 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0114 | Val rms_score: 0.8084
299
+ 2025-09-23 03:04:45,535 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0108 | Val rms_score: 0.8148
300
+ 2025-09-23 03:04:48,043 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0104 | Val rms_score: 0.8185
301
+ 2025-09-23 03:04:50,522 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0099 | Val rms_score: 0.8159
302
+ 2025-09-23 03:04:53,164 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0105 | Val rms_score: 0.8159
303
+ 2025-09-23 03:04:55,647 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0101 | Val rms_score: 0.8129
304
+ 2025-09-23 03:04:58,173 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0113 | Val rms_score: 0.8035
305
+ 2025-09-23 03:04:58,344 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 833
306
+ 2025-09-23 03:04:58,863 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 49 with val rms_score: 0.8035
307
+ 2025-09-23 03:05:01,318 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0114 | Val rms_score: 0.8144
308
+ 2025-09-23 03:05:03,720 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0136 | Val rms_score: 0.8079
309
+ 2025-09-23 03:05:06,470 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0106 | Val rms_score: 0.8259
310
+ 2025-09-23 03:05:08,895 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0378 | Val rms_score: 0.8124
311
+ 2025-09-23 03:05:11,308 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0146 | Val rms_score: 0.8036
312
+ 2025-09-23 03:05:13,852 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0099 | Val rms_score: 0.8172
313
+ 2025-09-23 03:05:16,319 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0101 | Val rms_score: 0.8118
314
+ 2025-09-23 03:05:18,861 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0100 | Val rms_score: 0.8081
315
+ 2025-09-23 03:05:21,040 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0098 | Val rms_score: 0.8030
316
+ 2025-09-23 03:05:21,178 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 986
317
+ 2025-09-23 03:05:21,688 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 58 with val rms_score: 0.8030
318
+ 2025-09-23 03:05:25,106 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0100 | Val rms_score: 0.8112
319
+ 2025-09-23 03:05:27,544 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0084 | Val rms_score: 0.8111
320
+ 2025-09-23 03:05:30,080 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0088 | Val rms_score: 0.8062
321
+ 2025-09-23 03:05:32,892 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0080 | Val rms_score: 0.8085
322
+ 2025-09-23 03:05:35,368 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0084 | Val rms_score: 0.8136
323
+ 2025-09-23 03:05:37,784 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0073 | Val rms_score: 0.8100
324
+ 2025-09-23 03:05:40,166 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0102 | Val rms_score: 0.8120
325
+ 2025-09-23 03:05:42,585 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0071 | Val rms_score: 0.8177
326
+ 2025-09-23 03:05:45,340 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0082 | Val rms_score: 0.8078
327
+ 2025-09-23 03:05:47,701 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0100 | Val rms_score: 0.8381
328
+ 2025-09-23 03:05:50,166 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0176 | Val rms_score: 0.7996
329
+ 2025-09-23 03:05:50,343 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 1173
330
+ 2025-09-23 03:05:50,857 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 69 with val rms_score: 0.7996
331
+ 2025-09-23 03:05:53,351 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0099 | Val rms_score: 0.8101
332
+ 2025-09-23 03:05:55,882 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0080 | Val rms_score: 0.8094
333
+ 2025-09-23 03:05:58,575 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0081 | Val rms_score: 0.8139
334
+ 2025-09-23 03:06:01,126 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0080 | Val rms_score: 0.8054
335
+ 2025-09-23 03:06:03,642 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0096 | Val rms_score: 0.8092
336
+ 2025-09-23 03:06:06,161 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0081 | Val rms_score: 0.8108
337
+ 2025-09-23 03:06:08,687 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0073 | Val rms_score: 0.8114
338
+ 2025-09-23 03:06:11,412 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0072 | Val rms_score: 0.8104
339
+ 2025-09-23 03:06:13,818 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0078 | Val rms_score: 0.8123
340
+ 2025-09-23 03:06:16,282 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0067 | Val rms_score: 0.8080
341
+ 2025-09-23 03:06:18,817 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0064 | Val rms_score: 0.8089
342
+ 2025-09-23 03:06:21,398 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0072 | Val rms_score: 0.8114
343
+ 2025-09-23 03:06:24,076 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0078 | Val rms_score: 0.8099
344
+ 2025-09-23 03:06:26,346 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0079 | Val rms_score: 0.8088
345
+ 2025-09-23 03:06:28,594 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0076 | Val rms_score: 0.8025
346
+ 2025-09-23 03:06:31,126 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0104 | Val rms_score: 0.7916
347
+ 2025-09-23 03:06:31,262 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Global step of best model: 1445
348
+ 2025-09-23 03:06:31,773 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Best model saved at epoch 85 with val rms_score: 0.7916
349
+ 2025-09-23 03:06:34,299 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0171 | Val rms_score: 0.8204
350
+ 2025-09-23 03:06:37,021 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0116 | Val rms_score: 0.8202
351
+ 2025-09-23 03:06:39,528 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0098 | Val rms_score: 0.8015
352
+ 2025-09-23 03:06:42,023 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0083 | Val rms_score: 0.8203
353
+ 2025-09-23 03:06:44,525 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0077 | Val rms_score: 0.8008
354
+ 2025-09-23 03:06:46,991 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0070 | Val rms_score: 0.8072
355
+ 2025-09-23 03:06:49,834 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0063 | Val rms_score: 0.8045
356
+ 2025-09-23 03:06:52,300 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0069 | Val rms_score: 0.7982
357
+ 2025-09-23 03:06:54,858 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0063 | Val rms_score: 0.8050
358
+ 2025-09-23 03:06:57,333 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0071 | Val rms_score: 0.8033
359
+ 2025-09-23 03:06:59,831 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0071 | Val rms_score: 0.8060
360
+ 2025-09-23 03:07:02,611 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0068 | Val rms_score: 0.8062
361
+ 2025-09-23 03:07:04,834 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0061 | Val rms_score: 0.8048
362
+ 2025-09-23 03:07:07,370 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0059 | Val rms_score: 0.8076
363
+ 2025-09-23 03:07:09,820 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0066 | Val rms_score: 0.8088
364
+ 2025-09-23 03:07:10,280 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Test rms_score: 0.5202
365
+ 2025-09-23 03:07:10,592 - logs_modchembert_freesolv_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg rms_score: 0.4979, Std Dev: 0.0158
logs_modchembert_regression_ModChemBERT-MLM-DAPT-TAFT-OPT/modchembert_deepchem_splits_run_lipo_epochs100_batch_size32_20250923_094951.log ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-09-23 09:49:51,070 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Running benchmark for dataset: lipo
2
+ 2025-09-23 09:49:51,070 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - dataset: lipo, tasks: ['exp'], epochs: 100, learning rate: 3e-05, transform: True
3
+ 2025-09-23 09:49:51,076 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Starting triplicate run 1 for dataset lipo at 2025-09-23_09-49-51
4
+ 2025-09-23 09:50:02,247 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.4125 | Val rms_score: 0.8456
5
+ 2025-09-23 09:50:02,247 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 105
6
+ 2025-09-23 09:50:02,783 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 0.8456
7
+ 2025-09-23 09:50:13,112 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3187 | Val rms_score: 0.6877
8
+ 2025-09-23 09:50:13,290 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 210
9
+ 2025-09-23 09:50:13,824 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 0.6877
10
+ 2025-09-23 09:50:24,072 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.3042 | Val rms_score: 0.6760
11
+ 2025-09-23 09:50:24,251 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 315
12
+ 2025-09-23 09:50:24,778 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 0.6760
13
+ 2025-09-23 09:50:35,106 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2359 | Val rms_score: 0.6661
14
+ 2025-09-23 09:50:35,293 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 420
15
+ 2025-09-23 09:50:35,846 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val rms_score: 0.6661
16
+ 2025-09-23 09:50:46,221 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.2150 | Val rms_score: 0.7116
17
+ 2025-09-23 09:50:56,535 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1802 | Val rms_score: 0.6560
18
+ 2025-09-23 09:50:56,919 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 630
19
+ 2025-09-23 09:50:57,466 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val rms_score: 0.6560
20
+ 2025-09-23 09:51:07,817 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1411 | Val rms_score: 0.6406
21
+ 2025-09-23 09:51:08,017 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 735
22
+ 2025-09-23 09:51:08,554 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 7 with val rms_score: 0.6406
23
+ 2025-09-23 09:51:18,834 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1250 | Val rms_score: 0.6428
24
+ 2025-09-23 09:51:29,293 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1250 | Val rms_score: 0.6591
25
+ 2025-09-23 09:51:40,793 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1006 | Val rms_score: 0.6415
26
+ 2025-09-23 09:51:50,830 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0960 | Val rms_score: 0.6415
27
+ 2025-09-23 09:52:01,354 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0865 | Val rms_score: 0.6432
28
+ 2025-09-23 09:52:11,418 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0798 | Val rms_score: 0.6408
29
+ 2025-09-23 09:52:21,434 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0737 | Val rms_score: 0.6372
30
+ 2025-09-23 09:52:21,579 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1470
31
+ 2025-09-23 09:52:22,135 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 14 with val rms_score: 0.6372
32
+ 2025-09-23 09:52:32,249 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0733 | Val rms_score: 0.6400
33
+ 2025-09-23 09:52:42,299 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0656 | Val rms_score: 0.6479
34
+ 2025-09-23 09:52:52,507 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0647 | Val rms_score: 0.6394
35
+ 2025-09-23 09:53:02,588 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0587 | Val rms_score: 0.6362
36
+ 2025-09-23 09:53:02,740 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1890
37
+ 2025-09-23 09:53:03,287 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 18 with val rms_score: 0.6362
38
+ 2025-09-23 09:53:13,369 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0582 | Val rms_score: 0.6424
39
+ 2025-09-23 09:53:24,936 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0566 | Val rms_score: 0.6589
40
+ 2025-09-23 09:53:35,259 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0570 | Val rms_score: 0.6293
41
+ 2025-09-23 09:53:35,637 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 2205
42
+ 2025-09-23 09:53:36,185 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 21 with val rms_score: 0.6293
43
+ 2025-09-23 09:53:46,499 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0496 | Val rms_score: 0.6395
44
+ 2025-09-23 09:53:56,783 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0471 | Val rms_score: 0.6456
45
+ 2025-09-23 09:54:06,854 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0475 | Val rms_score: 0.6384
46
+ 2025-09-23 09:54:17,109 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0484 | Val rms_score: 0.6400
47
+ 2025-09-23 09:54:27,257 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0453 | Val rms_score: 0.6342
48
+ 2025-09-23 09:54:37,815 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0400 | Val rms_score: 0.6490
49
+ 2025-09-23 09:54:47,927 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0412 | Val rms_score: 0.6425
50
+ 2025-09-23 09:54:58,868 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0431 | Val rms_score: 0.6412
51
+ 2025-09-23 09:55:09,095 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0403 | Val rms_score: 0.6343
52
+ 2025-09-23 09:55:19,374 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0403 | Val rms_score: 0.6418
53
+ 2025-09-23 09:55:29,905 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0362 | Val rms_score: 0.6451
54
+ 2025-09-23 09:55:40,204 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0382 | Val rms_score: 0.6452
55
+ 2025-09-23 09:55:50,620 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0350 | Val rms_score: 0.6402
56
+ 2025-09-23 09:56:00,913 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0352 | Val rms_score: 0.6475
57
+ 2025-09-23 09:56:11,188 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0338 | Val rms_score: 0.6436
58
+ 2025-09-23 09:56:21,633 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0320 | Val rms_score: 0.6399
59
+ 2025-09-23 09:56:31,796 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0337 | Val rms_score: 0.6415
60
+ 2025-09-23 09:56:43,304 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0334 | Val rms_score: 0.6509
61
+ 2025-09-23 09:56:53,394 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0312 | Val rms_score: 0.6344
62
+ 2025-09-23 09:57:03,591 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0229 | Val rms_score: 0.6362
63
+ 2025-09-23 09:57:13,921 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0324 | Val rms_score: 0.6357
64
+ 2025-09-23 09:57:24,056 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0286 | Val rms_score: 0.6417
65
+ 2025-09-23 09:57:34,169 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0326 | Val rms_score: 0.6348
66
+ 2025-09-23 09:57:44,259 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0308 | Val rms_score: 0.6329
67
+ 2025-09-23 09:57:54,306 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0312 | Val rms_score: 0.6391
68
+ 2025-09-23 09:58:04,889 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0290 | Val rms_score: 0.6342
69
+ 2025-09-23 09:58:16,389 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0318 | Val rms_score: 0.6459
70
+ 2025-09-23 09:58:26,725 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0285 | Val rms_score: 0.6382
71
+ 2025-09-23 09:58:37,117 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0305 | Val rms_score: 0.6396
72
+ 2025-09-23 09:58:47,425 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0281 | Val rms_score: 0.6380
73
+ 2025-09-23 09:58:57,859 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0280 | Val rms_score: 0.6357
74
+ 2025-09-23 09:59:08,236 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0276 | Val rms_score: 0.6358
75
+ 2025-09-23 09:59:18,544 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0259 | Val rms_score: 0.6448
76
+ 2025-09-23 09:59:28,717 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0269 | Val rms_score: 0.6388
77
+ 2025-09-23 09:59:38,758 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0256 | Val rms_score: 0.6353
78
+ 2025-09-23 09:59:49,138 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0254 | Val rms_score: 0.6405
79
+ 2025-09-23 10:00:00,667 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0250 | Val rms_score: 0.6400
80
+ 2025-09-23 10:00:10,988 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0243 | Val rms_score: 0.6407
81
+ 2025-09-23 10:00:21,188 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0273 | Val rms_score: 0.6370
82
+ 2025-09-23 10:00:31,476 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0270 | Val rms_score: 0.6385
83
+ 2025-09-23 10:00:41,810 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0246 | Val rms_score: 0.6395
84
+ 2025-09-23 10:00:51,911 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0275 | Val rms_score: 0.6405
85
+ 2025-09-23 10:01:01,888 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0227 | Val rms_score: 0.6387
86
+ 2025-09-23 10:01:12,161 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0242 | Val rms_score: 0.6415
87
+ 2025-09-23 10:01:22,437 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0240 | Val rms_score: 0.6371
88
+ 2025-09-23 10:01:34,300 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0250 | Val rms_score: 0.6360
89
+ 2025-09-23 10:01:44,528 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0256 | Val rms_score: 0.6377
90
+ 2025-09-23 10:01:54,946 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0241 | Val rms_score: 0.6412
91
+ 2025-09-23 10:02:05,005 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0241 | Val rms_score: 0.6426
92
+ 2025-09-23 10:02:15,336 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0233 | Val rms_score: 0.6436
93
+ 2025-09-23 10:02:25,883 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0247 | Val rms_score: 0.6399
94
+ 2025-09-23 10:02:36,433 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0249 | Val rms_score: 0.6411
95
+ 2025-09-23 10:02:46,549 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0233 | Val rms_score: 0.6356
96
+ 2025-09-23 10:02:56,610 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0229 | Val rms_score: 0.6391
97
+ 2025-09-23 10:03:06,659 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0229 | Val rms_score: 0.6360
98
+ 2025-09-23 10:03:18,197 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0229 | Val rms_score: 0.6482
99
+ 2025-09-23 10:03:28,461 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0238 | Val rms_score: 0.6398
100
+ 2025-09-23 10:03:38,739 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0240 | Val rms_score: 0.6367
101
+ 2025-09-23 10:03:48,976 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0231 | Val rms_score: 0.6438
102
+ 2025-09-23 10:03:59,294 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0234 | Val rms_score: 0.6373
103
+ 2025-09-23 10:04:09,854 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0205 | Val rms_score: 0.6346
104
+ 2025-09-23 10:04:19,833 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0224 | Val rms_score: 0.6369
105
+ 2025-09-23 10:04:30,002 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0262 | Val rms_score: 0.6373
106
+ 2025-09-23 10:04:40,281 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0234 | Val rms_score: 0.6422
107
+ 2025-09-23 10:04:51,919 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0249 | Val rms_score: 0.6384
108
+ 2025-09-23 10:05:02,592 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0237 | Val rms_score: 0.6359
109
+ 2025-09-23 10:05:12,913 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0215 | Val rms_score: 0.6315
110
+ 2025-09-23 10:05:23,292 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0213 | Val rms_score: 0.6386
111
+ 2025-09-23 10:05:33,514 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0219 | Val rms_score: 0.6391
112
+ 2025-09-23 10:05:43,583 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0210 | Val rms_score: 0.6404
113
+ 2025-09-23 10:05:53,893 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0214 | Val rms_score: 0.6431
114
+ 2025-09-23 10:06:03,985 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0210 | Val rms_score: 0.6416
115
+ 2025-09-23 10:06:14,330 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0213 | Val rms_score: 0.6404
116
+ 2025-09-23 10:06:24,598 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0228 | Val rms_score: 0.6359
117
+ 2025-09-23 10:06:36,157 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0215 | Val rms_score: 0.6430
118
+ 2025-09-23 10:06:46,463 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0202 | Val rms_score: 0.6397
119
+ 2025-09-23 10:06:56,527 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0207 | Val rms_score: 0.6406
120
+ 2025-09-23 10:07:06,537 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0203 | Val rms_score: 0.6394
121
+ 2025-09-23 10:07:16,611 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0206 | Val rms_score: 0.6440
122
+ 2025-09-23 10:07:17,665 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Test rms_score: 0.6564
123
+ 2025-09-23 10:07:17,954 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Starting triplicate run 2 for dataset lipo at 2025-09-23_10-07-17
124
+ 2025-09-23 10:07:26,974 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.4594 | Val rms_score: 0.7378
125
+ 2025-09-23 10:07:26,974 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 105
126
+ 2025-09-23 10:07:27,511 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 0.7378
127
+ 2025-09-23 10:07:37,960 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.2875 | Val rms_score: 0.6794
128
+ 2025-09-23 10:07:38,144 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 210
129
+ 2025-09-23 10:07:38,682 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 0.6794
130
+ 2025-09-23 10:07:49,036 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.2562 | Val rms_score: 0.6874
131
+ 2025-09-23 10:07:59,325 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2156 | Val rms_score: 0.6588
132
+ 2025-09-23 10:07:59,496 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 420
133
+ 2025-09-23 10:08:00,065 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 4 with val rms_score: 0.6588
134
+ 2025-09-23 10:08:10,305 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1825 | Val rms_score: 0.6580
135
+ 2025-09-23 10:08:10,488 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 525
136
+ 2025-09-23 10:08:11,080 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 0.6580
137
+ 2025-09-23 10:08:21,343 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1781 | Val rms_score: 0.6366
138
+ 2025-09-23 10:08:21,778 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 630
139
+ 2025-09-23 10:08:22,331 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 6 with val rms_score: 0.6366
140
+ 2025-09-23 10:08:32,613 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1366 | Val rms_score: 0.6514
141
+ 2025-09-23 10:08:43,067 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1227 | Val rms_score: 0.6508
142
+ 2025-09-23 10:08:53,262 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1028 | Val rms_score: 0.6402
143
+ 2025-09-23 10:09:04,731 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1037 | Val rms_score: 0.6513
144
+ 2025-09-23 10:09:14,978 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0875 | Val rms_score: 0.6562
145
+ 2025-09-23 10:09:25,497 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0854 | Val rms_score: 0.6380
146
+ 2025-09-23 10:09:35,663 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0784 | Val rms_score: 0.6432
147
+ 2025-09-23 10:09:46,047 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0857 | Val rms_score: 0.6363
148
+ 2025-09-23 10:09:46,203 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1470
149
+ 2025-09-23 10:09:46,774 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 14 with val rms_score: 0.6363
150
+ 2025-09-23 10:09:57,340 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0692 | Val rms_score: 0.6393
151
+ 2025-09-23 10:10:07,480 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0609 | Val rms_score: 0.6398
152
+ 2025-09-23 10:10:18,019 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0599 | Val rms_score: 0.6326
153
+ 2025-09-23 10:10:18,168 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1785
154
+ 2025-09-23 10:10:18,706 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 17 with val rms_score: 0.6326
155
+ 2025-09-23 10:10:28,737 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0552 | Val rms_score: 0.6408
156
+ 2025-09-23 10:10:38,839 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0566 | Val rms_score: 0.6270
157
+ 2025-09-23 10:10:39,029 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1995
158
+ 2025-09-23 10:10:39,587 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 19 with val rms_score: 0.6270
159
+ 2025-09-23 10:10:51,031 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0541 | Val rms_score: 0.6347
160
+ 2025-09-23 10:11:01,299 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0426 | Val rms_score: 0.6275
161
+ 2025-09-23 10:11:12,005 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0566 | Val rms_score: 0.6451
162
+ 2025-09-23 10:11:22,078 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0484 | Val rms_score: 0.6462
163
+ 2025-09-23 10:11:32,250 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0475 | Val rms_score: 0.6413
164
+ 2025-09-23 10:11:42,465 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0428 | Val rms_score: 0.6347
165
+ 2025-09-23 10:11:52,644 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0503 | Val rms_score: 0.6343
166
+ 2025-09-23 10:12:03,263 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0413 | Val rms_score: 0.6363
167
+ 2025-09-23 10:12:13,689 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0447 | Val rms_score: 0.6510
168
+ 2025-09-23 10:12:25,022 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0399 | Val rms_score: 0.6293
169
+ 2025-09-23 10:12:35,237 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0400 | Val rms_score: 0.6420
170
+ 2025-09-23 10:12:45,540 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0389 | Val rms_score: 0.6364
171
+ 2025-09-23 10:12:56,141 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0375 | Val rms_score: 0.6461
172
+ 2025-09-23 10:13:06,424 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0365 | Val rms_score: 0.6361
173
+ 2025-09-23 10:13:16,506 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0355 | Val rms_score: 0.6319
174
+ 2025-09-23 10:13:26,464 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0360 | Val rms_score: 0.6368
175
+ 2025-09-23 10:13:36,530 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0391 | Val rms_score: 0.6499
176
+ 2025-09-23 10:13:46,714 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0369 | Val rms_score: 0.6452
177
+ 2025-09-23 10:13:56,868 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0351 | Val rms_score: 0.6436
178
+ 2025-09-23 10:14:08,398 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0339 | Val rms_score: 0.6416
179
+ 2025-09-23 10:14:18,694 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0328 | Val rms_score: 0.6375
180
+ 2025-09-23 10:14:28,827 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0285 | Val rms_score: 0.6405
181
+ 2025-09-23 10:14:39,234 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0354 | Val rms_score: 0.6422
182
+ 2025-09-23 10:14:49,181 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0294 | Val rms_score: 0.6401
183
+ 2025-09-23 10:14:59,321 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0346 | Val rms_score: 0.6344
184
+ 2025-09-23 10:15:09,716 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0347 | Val rms_score: 0.6334
185
+ 2025-09-23 10:15:20,062 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0301 | Val rms_score: 0.6344
186
+ 2025-09-23 10:15:30,702 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0286 | Val rms_score: 0.6420
187
+ 2025-09-23 10:15:42,166 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0305 | Val rms_score: 0.6393
188
+ 2025-09-23 10:15:52,478 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0300 | Val rms_score: 0.6393
189
+ 2025-09-23 10:16:02,748 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0278 | Val rms_score: 0.6361
190
+ 2025-09-23 10:16:12,658 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0290 | Val rms_score: 0.6295
191
+ 2025-09-23 10:16:23,369 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0284 | Val rms_score: 0.6477
192
+ 2025-09-23 10:16:33,558 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0286 | Val rms_score: 0.6373
193
+ 2025-09-23 10:16:43,897 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0269 | Val rms_score: 0.6462
194
+ 2025-09-23 10:16:53,988 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0279 | Val rms_score: 0.6353
195
+ 2025-09-23 10:17:03,774 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0283 | Val rms_score: 0.6322
196
+ 2025-09-23 10:17:14,181 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0265 | Val rms_score: 0.6370
197
+ 2025-09-23 10:17:26,061 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0266 | Val rms_score: 0.6398
198
+ 2025-09-23 10:17:36,506 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0258 | Val rms_score: 0.6412
199
+ 2025-09-23 10:17:47,030 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0259 | Val rms_score: 0.6362
200
+ 2025-09-23 10:17:57,384 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0287 | Val rms_score: 0.6418
201
+ 2025-09-23 10:18:07,993 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0268 | Val rms_score: 0.6344
202
+ 2025-09-23 10:18:18,262 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0293 | Val rms_score: 0.6351
203
+ 2025-09-23 10:18:28,208 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0289 | Val rms_score: 0.6386
204
+ 2025-09-23 10:18:38,182 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0270 | Val rms_score: 0.6375
205
+ 2025-09-23 10:18:48,285 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0262 | Val rms_score: 0.6319
206
+ 2025-09-23 10:18:59,938 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0250 | Val rms_score: 0.6365
207
+ 2025-09-23 10:19:10,125 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0242 | Val rms_score: 0.6337
208
+ 2025-09-23 10:19:20,121 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0255 | Val rms_score: 0.6369
209
+ 2025-09-23 10:19:30,532 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0244 | Val rms_score: 0.6320
210
+ 2025-09-23 10:19:40,909 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0260 | Val rms_score: 0.6328
211
+ 2025-09-23 10:19:51,458 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0251 | Val rms_score: 0.6315
212
+ 2025-09-23 10:20:01,700 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0250 | Val rms_score: 0.6310
213
+ 2025-09-23 10:20:11,896 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0253 | Val rms_score: 0.6384
214
+ 2025-09-23 10:20:22,433 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0219 | Val rms_score: 0.6360
215
+ 2025-09-23 10:20:32,678 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0241 | Val rms_score: 0.6372
216
+ 2025-09-23 10:20:44,460 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0228 | Val rms_score: 0.6366
217
+ 2025-09-23 10:20:54,594 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0222 | Val rms_score: 0.6355
218
+ 2025-09-23 10:21:04,873 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0230 | Val rms_score: 0.6361
219
+ 2025-09-23 10:21:15,152 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0233 | Val rms_score: 0.6415
220
+ 2025-09-23 10:21:25,348 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0241 | Val rms_score: 0.6329
221
+ 2025-09-23 10:21:35,669 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0209 | Val rms_score: 0.6346
222
+ 2025-09-23 10:21:45,689 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0258 | Val rms_score: 0.6416
223
+ 2025-09-23 10:21:55,759 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0226 | Val rms_score: 0.6353
224
+ 2025-09-23 10:22:05,914 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0222 | Val rms_score: 0.6396
225
+ 2025-09-23 10:22:17,421 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0215 | Val rms_score: 0.6393
226
+ 2025-09-23 10:22:27,907 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0235 | Val rms_score: 0.6405
227
+ 2025-09-23 10:22:38,215 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0234 | Val rms_score: 0.6351
228
+ 2025-09-23 10:22:48,492 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0224 | Val rms_score: 0.6358
229
+ 2025-09-23 10:22:58,638 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0217 | Val rms_score: 0.6343
230
+ 2025-09-23 10:23:08,740 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0220 | Val rms_score: 0.6472
231
+ 2025-09-23 10:23:18,940 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0206 | Val rms_score: 0.6382
232
+ 2025-09-23 10:23:29,163 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0225 | Val rms_score: 0.6370
233
+ 2025-09-23 10:23:39,254 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0222 | Val rms_score: 0.6350
234
+ 2025-09-23 10:23:49,248 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0203 | Val rms_score: 0.6373
235
+ 2025-09-23 10:24:00,773 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0210 | Val rms_score: 0.6346
236
+ 2025-09-23 10:24:11,314 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0213 | Val rms_score: 0.6364
237
+ 2025-09-23 10:24:21,537 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0214 | Val rms_score: 0.6340
238
+ 2025-09-23 10:24:31,760 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0208 | Val rms_score: 0.6342
239
+ 2025-09-23 10:24:41,991 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0219 | Val rms_score: 0.6349
240
+ 2025-09-23 10:24:43,024 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Test rms_score: 0.6620
241
+ 2025-09-23 10:24:43,323 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Starting triplicate run 3 for dataset lipo at 2025-09-23_10-24-43
242
+ 2025-09-23 10:24:52,233 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 1/100 | Train Loss: 0.4562 | Val rms_score: 0.7717
243
+ 2025-09-23 10:24:52,233 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 105
244
+ 2025-09-23 10:24:52,750 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 1 with val rms_score: 0.7717
245
+ 2025-09-23 10:25:02,976 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 2/100 | Train Loss: 0.3625 | Val rms_score: 0.7242
246
+ 2025-09-23 10:25:03,146 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 210
247
+ 2025-09-23 10:25:03,675 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 2 with val rms_score: 0.7242
248
+ 2025-09-23 10:25:13,870 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 3/100 | Train Loss: 0.2938 | Val rms_score: 0.6620
249
+ 2025-09-23 10:25:14,046 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 315
250
+ 2025-09-23 10:25:14,581 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 3 with val rms_score: 0.6620
251
+ 2025-09-23 10:25:24,777 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 4/100 | Train Loss: 0.2281 | Val rms_score: 0.6882
252
+ 2025-09-23 10:25:34,563 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 5/100 | Train Loss: 0.1925 | Val rms_score: 0.6486
253
+ 2025-09-23 10:25:34,751 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 525
254
+ 2025-09-23 10:25:35,274 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 5 with val rms_score: 0.6486
255
+ 2025-09-23 10:25:45,249 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 6/100 | Train Loss: 0.1812 | Val rms_score: 0.6793
256
+ 2025-09-23 10:25:55,476 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 7/100 | Train Loss: 0.1545 | Val rms_score: 0.6711
257
+ 2025-09-23 10:26:05,420 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 8/100 | Train Loss: 0.1313 | Val rms_score: 0.6632
258
+ 2025-09-23 10:26:15,293 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 9/100 | Train Loss: 0.1118 | Val rms_score: 0.6382
259
+ 2025-09-23 10:26:15,443 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 945
260
+ 2025-09-23 10:26:15,994 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 9 with val rms_score: 0.6382
261
+ 2025-09-23 10:26:27,459 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 10/100 | Train Loss: 0.1013 | Val rms_score: 0.6393
262
+ 2025-09-23 10:26:37,695 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 11/100 | Train Loss: 0.0920 | Val rms_score: 0.6410
263
+ 2025-09-23 10:26:48,077 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 12/100 | Train Loss: 0.0865 | Val rms_score: 0.6355
264
+ 2025-09-23 10:26:48,458 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1260
265
+ 2025-09-23 10:26:49,002 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 12 with val rms_score: 0.6355
266
+ 2025-09-23 10:26:59,029 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 13/100 | Train Loss: 0.0837 | Val rms_score: 0.6453
267
+ 2025-09-23 10:27:09,134 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 14/100 | Train Loss: 0.0790 | Val rms_score: 0.6521
268
+ 2025-09-23 10:27:19,214 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 15/100 | Train Loss: 0.0708 | Val rms_score: 0.6351
269
+ 2025-09-23 10:27:19,394 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 1575
270
+ 2025-09-23 10:27:19,921 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 15 with val rms_score: 0.6351
271
+ 2025-09-23 10:27:30,112 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 16/100 | Train Loss: 0.0684 | Val rms_score: 0.6521
272
+ 2025-09-23 10:27:40,521 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 17/100 | Train Loss: 0.0614 | Val rms_score: 0.6536
273
+ 2025-09-23 10:27:50,456 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 18/100 | Train Loss: 0.0597 | Val rms_score: 0.6467
274
+ 2025-09-23 10:28:00,477 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 19/100 | Train Loss: 0.0589 | Val rms_score: 0.6391
275
+ 2025-09-23 10:28:11,963 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 20/100 | Train Loss: 0.0556 | Val rms_score: 0.6334
276
+ 2025-09-23 10:28:12,108 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 2100
277
+ 2025-09-23 10:28:12,644 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 20 with val rms_score: 0.6334
278
+ 2025-09-23 10:28:22,814 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 21/100 | Train Loss: 0.0426 | Val rms_score: 0.6333
279
+ 2025-09-23 10:28:23,269 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 2205
280
+ 2025-09-23 10:28:23,798 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 21 with val rms_score: 0.6333
281
+ 2025-09-23 10:28:33,653 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 22/100 | Train Loss: 0.0516 | Val rms_score: 0.6319
282
+ 2025-09-23 10:28:33,834 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 2310
283
+ 2025-09-23 10:28:34,382 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 22 with val rms_score: 0.6319
284
+ 2025-09-23 10:28:44,351 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 23/100 | Train Loss: 0.0464 | Val rms_score: 0.6385
285
+ 2025-09-23 10:28:54,325 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 24/100 | Train Loss: 0.0543 | Val rms_score: 0.6400
286
+ 2025-09-23 10:29:04,331 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 25/100 | Train Loss: 0.0450 | Val rms_score: 0.6382
287
+ 2025-09-23 10:29:14,462 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 26/100 | Train Loss: 0.0479 | Val rms_score: 0.6528
288
+ 2025-09-23 10:29:24,775 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 27/100 | Train Loss: 0.0415 | Val rms_score: 0.6347
289
+ 2025-09-23 10:29:34,980 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 28/100 | Train Loss: 0.0414 | Val rms_score: 0.6483
290
+ 2025-09-23 10:29:46,356 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 29/100 | Train Loss: 0.0401 | Val rms_score: 0.6325
291
+ 2025-09-23 10:29:56,471 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 30/100 | Train Loss: 0.0413 | Val rms_score: 0.6322
292
+ 2025-09-23 10:30:06,586 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 31/100 | Train Loss: 0.0398 | Val rms_score: 0.6438
293
+ 2025-09-23 10:30:16,902 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 32/100 | Train Loss: 0.0406 | Val rms_score: 0.6349
294
+ 2025-09-23 10:30:26,900 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 33/100 | Train Loss: 0.0361 | Val rms_score: 0.6386
295
+ 2025-09-23 10:30:36,796 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 34/100 | Train Loss: 0.0350 | Val rms_score: 0.6350
296
+ 2025-09-23 10:30:46,638 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 35/100 | Train Loss: 0.0356 | Val rms_score: 0.6488
297
+ 2025-09-23 10:30:56,828 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 36/100 | Train Loss: 0.0352 | Val rms_score: 0.6347
298
+ 2025-09-23 10:31:07,287 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 37/100 | Train Loss: 0.0340 | Val rms_score: 0.6424
299
+ 2025-09-23 10:31:17,397 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 38/100 | Train Loss: 0.0351 | Val rms_score: 0.6389
300
+ 2025-09-23 10:31:28,795 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 39/100 | Train Loss: 0.0331 | Val rms_score: 0.6358
301
+ 2025-09-23 10:31:38,845 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 40/100 | Train Loss: 0.0319 | Val rms_score: 0.6374
302
+ 2025-09-23 10:31:48,809 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 41/100 | Train Loss: 0.0340 | Val rms_score: 0.6336
303
+ 2025-09-23 10:31:59,259 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 42/100 | Train Loss: 0.0328 | Val rms_score: 0.6442
304
+ 2025-09-23 10:32:09,435 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 43/100 | Train Loss: 0.0336 | Val rms_score: 0.6342
305
+ 2025-09-23 10:32:19,544 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 44/100 | Train Loss: 0.0299 | Val rms_score: 0.6435
306
+ 2025-09-23 10:32:29,474 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 45/100 | Train Loss: 0.0314 | Val rms_score: 0.6434
307
+ 2025-09-23 10:32:39,468 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 46/100 | Train Loss: 0.0328 | Val rms_score: 0.6471
308
+ 2025-09-23 10:32:49,924 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 47/100 | Train Loss: 0.0263 | Val rms_score: 0.6409
309
+ 2025-09-23 10:33:00,995 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 48/100 | Train Loss: 0.0283 | Val rms_score: 0.6449
310
+ 2025-09-23 10:33:11,119 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 49/100 | Train Loss: 0.0286 | Val rms_score: 0.6372
311
+ 2025-09-23 10:33:21,340 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 50/100 | Train Loss: 0.0294 | Val rms_score: 0.6402
312
+ 2025-09-23 10:33:31,500 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 51/100 | Train Loss: 0.0288 | Val rms_score: 0.6407
313
+ 2025-09-23 10:33:41,934 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 52/100 | Train Loss: 0.0306 | Val rms_score: 0.6449
314
+ 2025-09-23 10:33:51,885 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 53/100 | Train Loss: 0.0294 | Val rms_score: 0.6428
315
+ 2025-09-23 10:34:01,865 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 54/100 | Train Loss: 0.0276 | Val rms_score: 0.6403
316
+ 2025-09-23 10:34:11,850 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 55/100 | Train Loss: 0.0290 | Val rms_score: 0.6443
317
+ 2025-09-23 10:34:21,934 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 56/100 | Train Loss: 0.0279 | Val rms_score: 0.6400
318
+ 2025-09-23 10:34:32,328 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 57/100 | Train Loss: 0.0259 | Val rms_score: 0.6386
319
+ 2025-09-23 10:34:43,740 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 58/100 | Train Loss: 0.0264 | Val rms_score: 0.6358
320
+ 2025-09-23 10:34:53,665 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 59/100 | Train Loss: 0.0275 | Val rms_score: 0.6410
321
+ 2025-09-23 10:35:03,645 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 60/100 | Train Loss: 0.0256 | Val rms_score: 0.6351
322
+ 2025-09-23 10:35:13,813 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 61/100 | Train Loss: 0.0275 | Val rms_score: 0.6409
323
+ 2025-09-23 10:35:24,016 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 62/100 | Train Loss: 0.0250 | Val rms_score: 0.6418
324
+ 2025-09-23 10:35:34,108 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 63/100 | Train Loss: 0.0246 | Val rms_score: 0.6349
325
+ 2025-09-23 10:35:44,240 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 64/100 | Train Loss: 0.0252 | Val rms_score: 0.6367
326
+ 2025-09-23 10:35:54,489 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 65/100 | Train Loss: 0.0255 | Val rms_score: 0.6368
327
+ 2025-09-23 10:36:04,627 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 66/100 | Train Loss: 0.0238 | Val rms_score: 0.6422
328
+ 2025-09-23 10:36:16,096 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 67/100 | Train Loss: 0.0254 | Val rms_score: 0.6403
329
+ 2025-09-23 10:36:26,014 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 68/100 | Train Loss: 0.0243 | Val rms_score: 0.6389
330
+ 2025-09-23 10:36:36,041 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 69/100 | Train Loss: 0.0245 | Val rms_score: 0.6351
331
+ 2025-09-23 10:36:46,288 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 70/100 | Train Loss: 0.0259 | Val rms_score: 0.6346
332
+ 2025-09-23 10:36:56,504 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 71/100 | Train Loss: 0.0241 | Val rms_score: 0.6382
333
+ 2025-09-23 10:37:06,930 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 72/100 | Train Loss: 0.0233 | Val rms_score: 0.6330
334
+ 2025-09-23 10:37:16,955 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 73/100 | Train Loss: 0.0233 | Val rms_score: 0.6362
335
+ 2025-09-23 10:37:27,060 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 74/100 | Train Loss: 0.0235 | Val rms_score: 0.6354
336
+ 2025-09-23 10:37:36,788 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 75/100 | Train Loss: 0.0224 | Val rms_score: 0.6380
337
+ 2025-09-23 10:37:47,009 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 76/100 | Train Loss: 0.0241 | Val rms_score: 0.6329
338
+ 2025-09-23 10:37:58,654 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 77/100 | Train Loss: 0.0229 | Val rms_score: 0.6344
339
+ 2025-09-23 10:38:08,876 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 78/100 | Train Loss: 0.0234 | Val rms_score: 0.6325
340
+ 2025-09-23 10:38:19,071 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 79/100 | Train Loss: 0.0219 | Val rms_score: 0.6406
341
+ 2025-09-23 10:38:29,310 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 80/100 | Train Loss: 0.0236 | Val rms_score: 0.6328
342
+ 2025-09-23 10:38:39,340 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 81/100 | Train Loss: 0.0244 | Val rms_score: 0.6349
343
+ 2025-09-23 10:38:49,821 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 82/100 | Train Loss: 0.0234 | Val rms_score: 0.6359
344
+ 2025-09-23 10:38:59,884 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 83/100 | Train Loss: 0.0214 | Val rms_score: 0.6378
345
+ 2025-09-23 10:39:09,988 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 84/100 | Train Loss: 0.0249 | Val rms_score: 0.6410
346
+ 2025-09-23 10:39:20,128 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 85/100 | Train Loss: 0.0227 | Val rms_score: 0.6345
347
+ 2025-09-23 10:39:31,259 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 86/100 | Train Loss: 0.0246 | Val rms_score: 0.6356
348
+ 2025-09-23 10:39:41,392 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 87/100 | Train Loss: 0.0238 | Val rms_score: 0.6344
349
+ 2025-09-23 10:39:50,955 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 88/100 | Train Loss: 0.0219 | Val rms_score: 0.6399
350
+ 2025-09-23 10:40:00,889 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 89/100 | Train Loss: 0.0226 | Val rms_score: 0.6335
351
+ 2025-09-23 10:40:10,872 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 90/100 | Train Loss: 0.0217 | Val rms_score: 0.6406
352
+ 2025-09-23 10:40:21,041 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 91/100 | Train Loss: 0.0243 | Val rms_score: 0.6346
353
+ 2025-09-23 10:40:31,445 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 92/100 | Train Loss: 0.0225 | Val rms_score: 0.6358
354
+ 2025-09-23 10:40:41,529 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 93/100 | Train Loss: 0.0228 | Val rms_score: 0.6357
355
+ 2025-09-23 10:40:51,655 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 94/100 | Train Loss: 0.0218 | Val rms_score: 0.6393
356
+ 2025-09-23 10:41:01,858 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 95/100 | Train Loss: 0.0226 | Val rms_score: 0.6352
357
+ 2025-09-23 10:41:13,215 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 96/100 | Train Loss: 0.0224 | Val rms_score: 0.6359
358
+ 2025-09-23 10:41:23,750 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 97/100 | Train Loss: 0.0203 | Val rms_score: 0.6354
359
+ 2025-09-23 10:41:34,078 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 98/100 | Train Loss: 0.0207 | Val rms_score: 0.6316
360
+ 2025-09-23 10:41:34,222 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Global step of best model: 10290
361
+ 2025-09-23 10:41:34,762 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Best model saved at epoch 98 with val rms_score: 0.6316
362
+ 2025-09-23 10:41:44,926 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 99/100 | Train Loss: 0.0219 | Val rms_score: 0.6350
363
+ 2025-09-23 10:41:55,113 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Epoch 100/100 | Train Loss: 0.0214 | Val rms_score: 0.6345
364
+ 2025-09-23 10:41:56,160 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Test rms_score: 0.6330
365
+ 2025-09-23 10:41:56,482 - logs_modchembert_lipo_epochs100_batch_size32 - INFO - Final Triplicate Test Results — Avg rms_score: 0.6505, Std Dev: 0.0126
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6926433af59f86e8cdb62ccb573fb160752386612a3e9c36860d4a0e2f48c8
3
+ size 460409308
modeling_modchembert.py ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Emmanuel Cortes, All Rights Reserved.
2
+ #
3
+ # Copyright 2024 Answer.AI, LightOn, and contributors, and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ # This file is adapted from the transformers library.
19
+ # Modifications include:
20
+ # - Additional classifier_pooling options for ModChemBertForSequenceClassification
21
+ # - sum_mean, sum_sum, mean_sum, mean_mean: from ChemLM (utilizes all hidden states)
22
+ # - max_cls, cls_mha, max_seq_mha: from MaxPoolBERT (utilizes last k hidden states)
23
+ # - max_seq_mean: a merge between sum_mean and max_cls (utilizes last k hidden states)
24
+ # - Addition of ModChemBertPoolingAttention for cls_mha and max_seq_mha pooling options
25
+
26
+ import copy
27
+ import math
28
+ import typing
29
+ from contextlib import nullcontext
30
+
31
+ import torch
32
+ import torch.nn as nn
33
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
35
+ from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput
36
+ from transformers.models.modernbert.modeling_modernbert import (
37
+ MODERNBERT_ATTENTION_FUNCTION,
38
+ ModernBertModel,
39
+ ModernBertPredictionHead,
40
+ ModernBertPreTrainedModel,
41
+ ModernBertRotaryEmbedding,
42
+ _pad_modernbert_output,
43
+ _unpad_modernbert_input,
44
+ )
45
+ from transformers.utils import logging
46
+
47
+ from .configuration_modchembert import ModChemBertConfig
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+
52
+ class InitWeightsMixin:
53
+ def _init_weights(self, module: nn.Module):
54
+ super()._init_weights(module) # type: ignore
55
+
56
+ cutoff_factor = self.config.initializer_cutoff_factor # type: ignore
57
+ if cutoff_factor is None:
58
+ cutoff_factor = 3
59
+
60
+ def init_weight(module: nn.Module, std: float):
61
+ if isinstance(module, nn.Linear):
62
+ nn.init.trunc_normal_(
63
+ module.weight,
64
+ mean=0.0,
65
+ std=std,
66
+ a=-cutoff_factor * std,
67
+ b=cutoff_factor * std,
68
+ )
69
+ if module.bias is not None:
70
+ nn.init.zeros_(module.bias)
71
+
72
+ stds = {
73
+ "in": self.config.initializer_range, # type: ignore
74
+ "out": self.config.initializer_range / math.sqrt(2.0 * self.config.num_hidden_layers), # type: ignore
75
+ "final_out": self.config.hidden_size**-0.5, # type: ignore
76
+ }
77
+
78
+ if isinstance(module, ModChemBertForMaskedLM):
79
+ init_weight(module.decoder, stds["out"])
80
+ elif isinstance(module, ModChemBertForSequenceClassification):
81
+ init_weight(module.classifier, stds["final_out"])
82
+ elif isinstance(module, ModChemBertPoolingAttention):
83
+ init_weight(module.Wq, stds["in"])
84
+ init_weight(module.Wk, stds["in"])
85
+ init_weight(module.Wv, stds["in"])
86
+ init_weight(module.Wo, stds["out"])
87
+
88
+
89
+ class ModChemBertPoolingAttention(nn.Module):
90
+ """Performs multi-headed self attention on a batch of sequences."""
91
+
92
+ def __init__(self, config: ModChemBertConfig):
93
+ super().__init__()
94
+ self.config = copy.deepcopy(config)
95
+ # Override num_attention_heads to use classifier_pooling_num_attention_heads
96
+ self.config.num_attention_heads = config.classifier_pooling_num_attention_heads
97
+ # Override attention_dropout to use classifier_pooling_attention_dropout
98
+ self.config.attention_dropout = config.classifier_pooling_attention_dropout
99
+
100
+ if config.hidden_size % config.num_attention_heads != 0:
101
+ raise ValueError(
102
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads "
103
+ f"({config.num_attention_heads})"
104
+ )
105
+
106
+ self.attention_dropout = config.attention_dropout
107
+ self.num_heads = config.num_attention_heads
108
+ self.head_dim = config.hidden_size // config.num_attention_heads
109
+ self.all_head_size = self.head_dim * self.num_heads
110
+ self.Wq = nn.Linear(config.hidden_size, self.all_head_size, bias=config.attention_bias)
111
+ self.Wk = nn.Linear(config.hidden_size, self.all_head_size, bias=config.attention_bias)
112
+ self.Wv = nn.Linear(config.hidden_size, self.all_head_size, bias=config.attention_bias)
113
+
114
+ # Use global attention
115
+ self.local_attention = (-1, -1)
116
+ rope_theta = config.global_rope_theta
117
+ # sdpa path from original ModernBert implementation
118
+ config_copy = copy.deepcopy(config)
119
+ config_copy.rope_theta = rope_theta
120
+ self.rotary_emb = ModernBertRotaryEmbedding(config=config_copy)
121
+
122
+ self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
123
+ self.out_drop = nn.Dropout(config.attention_dropout) if config.attention_dropout > 0.0 else nn.Identity()
124
+ self.pruned_heads = set()
125
+
126
+ def forward(
127
+ self,
128
+ q: torch.Tensor,
129
+ kv: torch.Tensor,
130
+ attention_mask: torch.Tensor | None = None,
131
+ **kwargs,
132
+ ) -> torch.Tensor:
133
+ bs, seq_len = kv.shape[:2]
134
+ q_proj: torch.Tensor = self.Wq(q)
135
+ k_proj: torch.Tensor = self.Wk(kv)
136
+ v_proj: torch.Tensor = self.Wv(kv)
137
+ qkv = torch.stack(
138
+ (
139
+ q_proj.reshape(bs, seq_len, self.num_heads, self.head_dim),
140
+ k_proj.reshape(bs, seq_len, self.num_heads, self.head_dim),
141
+ v_proj.reshape(bs, seq_len, self.num_heads, self.head_dim),
142
+ ),
143
+ dim=2,
144
+ ) # (bs, seq_len, 3, num_heads, head_dim)
145
+
146
+ device = kv.device
147
+ if attention_mask is None:
148
+ attention_mask = torch.ones((bs, seq_len), device=device, dtype=torch.bool)
149
+ position_ids = torch.arange(seq_len, device=device).unsqueeze(0).long()
150
+
151
+ attn_outputs = MODERNBERT_ATTENTION_FUNCTION["sdpa"](
152
+ self,
153
+ qkv=qkv,
154
+ attention_mask=_prepare_4d_attention_mask(attention_mask, kv.dtype),
155
+ sliding_window_mask=None, # not needed when using global attention
156
+ position_ids=position_ids,
157
+ local_attention=self.local_attention,
158
+ bs=bs,
159
+ dim=self.all_head_size,
160
+ **kwargs,
161
+ )
162
+ hidden_states = attn_outputs[0]
163
+ hidden_states = self.out_drop(self.Wo(hidden_states))
164
+
165
+ return hidden_states
166
+
167
+
168
+ class ModChemBertForMaskedLM(InitWeightsMixin, ModernBertPreTrainedModel):
169
+ config_class = ModChemBertConfig
170
+ _tied_weights_keys = ["decoder.weight"]
171
+
172
+ def __init__(self, config: ModChemBertConfig):
173
+ super().__init__(config)
174
+ self.config = config
175
+ self.model = ModernBertModel(config)
176
+ self.head = ModernBertPredictionHead(config)
177
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=config.decoder_bias)
178
+
179
+ self.sparse_prediction = self.config.sparse_prediction
180
+ self.sparse_pred_ignore_index = self.config.sparse_pred_ignore_index
181
+
182
+ # Initialize weights and apply final processing
183
+ self.post_init()
184
+
185
+ def get_output_embeddings(self):
186
+ return self.decoder
187
+
188
+ def set_output_embeddings(self, new_embeddings: nn.Linear):
189
+ self.decoder = new_embeddings
190
+
191
+ @torch.compile(dynamic=True)
192
+ def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
193
+ return self.decoder(self.head(output))
194
+
195
+ def forward(
196
+ self,
197
+ input_ids: torch.LongTensor | None = None,
198
+ attention_mask: torch.Tensor | None = None,
199
+ sliding_window_mask: torch.Tensor | None = None,
200
+ position_ids: torch.Tensor | None = None,
201
+ inputs_embeds: torch.Tensor | None = None,
202
+ labels: torch.Tensor | None = None,
203
+ indices: torch.Tensor | None = None,
204
+ cu_seqlens: torch.Tensor | None = None,
205
+ max_seqlen: int | None = None,
206
+ batch_size: int | None = None,
207
+ seq_len: int | None = None,
208
+ output_attentions: bool | None = None,
209
+ output_hidden_states: bool | None = None,
210
+ return_dict: bool | None = None,
211
+ **kwargs,
212
+ ) -> tuple[torch.Tensor] | tuple[torch.Tensor, typing.Any] | MaskedLMOutput:
213
+ r"""
214
+ sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
215
+ Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
216
+ perform global attention, while the rest perform local attention. This mask is used to avoid attending to
217
+ far-away tokens in the local attention layers when not using Flash Attention.
218
+ indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
219
+ Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
220
+ cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
221
+ Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
222
+ max_seqlen (`int`, *optional*):
223
+ Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids & pad output tensors.
224
+ batch_size (`int`, *optional*):
225
+ Batch size of the input sequences. Used to pad the output tensors.
226
+ seq_len (`int`, *optional*):
227
+ Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
228
+ """
229
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
230
+ self._maybe_set_compile()
231
+
232
+ if self.config._attn_implementation == "flash_attention_2": # noqa: SIM102
233
+ if indices is None and cu_seqlens is None and max_seqlen is None:
234
+ if batch_size is None and seq_len is None:
235
+ if inputs_embeds is not None:
236
+ batch_size, seq_len = inputs_embeds.shape[:2]
237
+ else:
238
+ batch_size, seq_len = input_ids.shape[:2] # type: ignore
239
+ device = input_ids.device if input_ids is not None else inputs_embeds.device # type: ignore
240
+
241
+ if attention_mask is None:
242
+ attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool) # type: ignore
243
+
244
+ if inputs_embeds is None:
245
+ with torch.no_grad():
246
+ input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
247
+ inputs=input_ids, # type: ignore
248
+ attention_mask=attention_mask, # type: ignore
249
+ position_ids=position_ids,
250
+ labels=labels,
251
+ )
252
+ else:
253
+ inputs_embeds, indices, cu_seqlens, max_seqlen, position_ids, labels = _unpad_modernbert_input(
254
+ inputs=inputs_embeds,
255
+ attention_mask=attention_mask, # type: ignore
256
+ position_ids=position_ids,
257
+ labels=labels,
258
+ )
259
+
260
+ outputs = self.model(
261
+ input_ids=input_ids,
262
+ attention_mask=attention_mask,
263
+ sliding_window_mask=sliding_window_mask,
264
+ position_ids=position_ids,
265
+ inputs_embeds=inputs_embeds,
266
+ indices=indices,
267
+ cu_seqlens=cu_seqlens,
268
+ max_seqlen=max_seqlen,
269
+ batch_size=batch_size,
270
+ seq_len=seq_len,
271
+ output_attentions=output_attentions,
272
+ output_hidden_states=output_hidden_states,
273
+ return_dict=return_dict,
274
+ )
275
+ last_hidden_state = outputs[0]
276
+
277
+ if self.sparse_prediction and labels is not None:
278
+ # flatten labels and output first
279
+ labels = labels.view(-1)
280
+ last_hidden_state = last_hidden_state.view(labels.shape[0], -1)
281
+
282
+ # then filter out the non-masked tokens
283
+ mask_tokens = labels != self.sparse_pred_ignore_index
284
+ last_hidden_state = last_hidden_state[mask_tokens]
285
+ labels = labels[mask_tokens]
286
+
287
+ logits = (
288
+ self.compiled_head(last_hidden_state)
289
+ if self.config.reference_compile
290
+ else self.decoder(self.head(last_hidden_state))
291
+ )
292
+
293
+ loss = None
294
+ if labels is not None:
295
+ loss = self.loss_function(logits, labels, vocab_size=self.config.vocab_size, **kwargs)
296
+
297
+ if self.config._attn_implementation == "flash_attention_2":
298
+ with nullcontext() if self.config.repad_logits_with_grad or labels is None else torch.no_grad():
299
+ logits = _pad_modernbert_output(inputs=logits, indices=indices, batch=batch_size, seqlen=seq_len) # type: ignore
300
+
301
+ if not return_dict:
302
+ output = (logits,)
303
+ return ((loss,) + output) if loss is not None else output
304
+
305
+ return MaskedLMOutput(
306
+ loss=loss,
307
+ logits=typing.cast(torch.FloatTensor, logits),
308
+ hidden_states=outputs.hidden_states,
309
+ attentions=outputs.attentions,
310
+ )
311
+
312
+
313
+ class ModChemBertForSequenceClassification(InitWeightsMixin, ModernBertPreTrainedModel):
314
+ config_class = ModChemBertConfig
315
+
316
+ def __init__(self, config: ModChemBertConfig):
317
+ super().__init__(config)
318
+ self.num_labels = config.num_labels
319
+ self.config = config
320
+
321
+ self.model = ModernBertModel(config)
322
+ if self.config.classifier_pooling in {"cls_mha", "max_seq_mha"}:
323
+ self.pooling_attn = ModChemBertPoolingAttention(config=self.config)
324
+ else:
325
+ self.pooling_attn = None
326
+ self.head = ModernBertPredictionHead(config)
327
+ self.drop = torch.nn.Dropout(config.classifier_dropout)
328
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
329
+
330
+ # Initialize weights and apply final processing
331
+ self.post_init()
332
+
333
+ def forward(
334
+ self,
335
+ input_ids: torch.LongTensor | None = None,
336
+ attention_mask: torch.Tensor | None = None,
337
+ sliding_window_mask: torch.Tensor | None = None,
338
+ position_ids: torch.Tensor | None = None,
339
+ inputs_embeds: torch.Tensor | None = None,
340
+ labels: torch.Tensor | None = None,
341
+ indices: torch.Tensor | None = None,
342
+ cu_seqlens: torch.Tensor | None = None,
343
+ max_seqlen: int | None = None,
344
+ batch_size: int | None = None,
345
+ seq_len: int | None = None,
346
+ output_attentions: bool | None = None,
347
+ output_hidden_states: bool | None = None,
348
+ return_dict: bool | None = None,
349
+ **kwargs,
350
+ ) -> tuple[torch.Tensor] | tuple[torch.Tensor, typing.Any] | SequenceClassifierOutput:
351
+ r"""
352
+ sliding_window_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
353
+ Mask to avoid performing attention on padding or far-away tokens. In ModernBert, only every few layers
354
+ perform global attention, while the rest perform local attention. This mask is used to avoid attending to
355
+ far-away tokens in the local attention layers when not using Flash Attention.
356
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
357
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
358
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
359
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
360
+ indices (`torch.Tensor` of shape `(total_unpadded_tokens,)`, *optional*):
361
+ Indices of the non-padding tokens in the input sequence. Used for unpadding the output.
362
+ cu_seqlens (`torch.Tensor` of shape `(batch + 1,)`, *optional*):
363
+ Cumulative sequence lengths of the input sequences. Used to index the unpadded tensors.
364
+ max_seqlen (`int`, *optional*):
365
+ Maximum sequence length in the batch excluding padding tokens. Used to unpad input_ids & pad output tensors.
366
+ batch_size (`int`, *optional*):
367
+ Batch size of the input sequences. Used to pad the output tensors.
368
+ seq_len (`int`, *optional*):
369
+ Sequence length of the input sequences including padding tokens. Used to pad the output tensors.
370
+ """
371
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
372
+ self._maybe_set_compile()
373
+
374
+ if input_ids is not None:
375
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
376
+
377
+ if batch_size is None and seq_len is None:
378
+ if inputs_embeds is not None:
379
+ batch_size, seq_len = inputs_embeds.shape[:2]
380
+ else:
381
+ batch_size, seq_len = input_ids.shape[:2] # type: ignore
382
+ device = input_ids.device if input_ids is not None else inputs_embeds.device # type: ignore
383
+
384
+ if attention_mask is None:
385
+ attention_mask = torch.ones((batch_size, seq_len), device=device, dtype=torch.bool) # type: ignore
386
+
387
+ # Ensure output_hidden_states is True in case pooling mode requires all hidden states
388
+ output_hidden_states = True
389
+
390
+ outputs = self.model(
391
+ input_ids=input_ids,
392
+ attention_mask=attention_mask,
393
+ sliding_window_mask=sliding_window_mask,
394
+ position_ids=position_ids,
395
+ inputs_embeds=inputs_embeds,
396
+ indices=indices,
397
+ cu_seqlens=cu_seqlens,
398
+ max_seqlen=max_seqlen,
399
+ batch_size=batch_size,
400
+ seq_len=seq_len,
401
+ output_attentions=output_attentions,
402
+ output_hidden_states=output_hidden_states,
403
+ return_dict=return_dict,
404
+ )
405
+ last_hidden_state = outputs[0]
406
+ hidden_states = outputs[1]
407
+
408
+ last_hidden_state = _pool_modchembert_output(
409
+ self,
410
+ last_hidden_state,
411
+ hidden_states,
412
+ typing.cast(torch.Tensor, attention_mask),
413
+ )
414
+ pooled_output = self.head(last_hidden_state)
415
+ pooled_output = self.drop(pooled_output)
416
+ logits = self.classifier(pooled_output)
417
+
418
+ loss = None
419
+ if labels is not None:
420
+ if self.config.problem_type is None:
421
+ if self.num_labels == 1:
422
+ self.config.problem_type = "regression"
423
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
424
+ self.config.problem_type = "single_label_classification"
425
+ else:
426
+ self.config.problem_type = "multi_label_classification"
427
+
428
+ if self.config.problem_type == "regression":
429
+ loss_fct = MSELoss()
430
+ if self.num_labels == 1:
431
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
432
+ else:
433
+ loss = loss_fct(logits, labels)
434
+ elif self.config.problem_type == "single_label_classification":
435
+ loss_fct = CrossEntropyLoss()
436
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
437
+ elif self.config.problem_type == "multi_label_classification":
438
+ loss_fct = BCEWithLogitsLoss()
439
+ loss = loss_fct(logits, labels)
440
+
441
+ if not return_dict:
442
+ output = (logits,)
443
+ return ((loss,) + output) if loss is not None else output
444
+
445
+ return SequenceClassifierOutput(
446
+ loss=loss,
447
+ logits=logits,
448
+ hidden_states=outputs.hidden_states,
449
+ attentions=outputs.attentions,
450
+ )
451
+
452
+
453
+ def _pool_modchembert_output(
454
+ module: ModChemBertForSequenceClassification,
455
+ last_hidden_state: torch.Tensor,
456
+ hidden_states: list[torch.Tensor],
457
+ attention_mask: torch.Tensor,
458
+ ):
459
+ """
460
+ Apply pooling strategy to hidden states for sequence-level classification/regression tasks.
461
+
462
+ This function implements various pooling strategies to aggregate sequence representations
463
+ into a single vector for downstream classification or regression tasks. The pooling method
464
+ is determined by the `classifier_pooling` configuration parameter.
465
+
466
+ Available pooling strategies:
467
+ - cls: Use the CLS token ([CLS]) representation from the last hidden state
468
+ - mean: Average pooling over all tokens in the sequence (attention-weighted)
469
+ - max_cls: Element-wise max pooling over the last k hidden states, then take CLS token
470
+ - cls_mha: Multi-head attention with CLS token as query and full sequence as keys/values
471
+ - max_seq_mha: Max pooling over last k states + multi-head attention with CLS as query
472
+ - max_seq_mean: Max pooling over last k hidden states, then mean pooling over sequence
473
+ - sum_mean: Sum all hidden states across layers, then mean pool over sequence
474
+ - sum_sum: Sum all hidden states across layers, then sum pool over sequence
475
+ - mean_sum: Mean all hidden states across layers, then sum pool over sequence
476
+ - mean_mean: Mean all hidden states across layers, then mean pool over sequence
477
+
478
+ Args:
479
+ module: The model instance containing configuration and pooling attention if needed
480
+ last_hidden_state: Final layer hidden states of shape (batch_size, seq_len, hidden_size)
481
+ hidden_states: List of hidden states from all layers, each of shape (batch_size, seq_len, hidden_size)
482
+ attention_mask: Attention mask of shape (batch_size, seq_len) indicating valid tokens
483
+
484
+ Returns:
485
+ torch.Tensor: Pooled representation of shape (batch_size, hidden_size)
486
+
487
+ Note:
488
+ Some pooling strategies (cls_mha, max_seq_mha) require the module to have a pooling_attn
489
+ attribute containing a ModChemBertPoolingAttention instance.
490
+ """
491
+ config = typing.cast(ModChemBertConfig, module.config)
492
+ if config.classifier_pooling == "cls":
493
+ last_hidden_state = last_hidden_state[:, 0]
494
+ elif config.classifier_pooling == "mean":
495
+ last_hidden_state = (last_hidden_state * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(
496
+ dim=1, keepdim=True
497
+ )
498
+ elif config.classifier_pooling == "max_cls":
499
+ k_hidden_states = hidden_states[-config.classifier_pooling_last_k :]
500
+ theta = torch.stack(k_hidden_states, dim=1) # (batch, k, seq_len, hidden)
501
+ pooled_seq = torch.max(theta, dim=1).values # Element-wise max over k -> (batch, seq_len, hidden)
502
+ last_hidden_state = pooled_seq[:, 0, :] # (batch, hidden)
503
+ elif config.classifier_pooling == "cls_mha":
504
+ # Similar to max_seq_mha but without the max pooling step
505
+ # Query is CLS token (position 0); Keys/Values are full sequence
506
+ q = last_hidden_state[:, 0, :].unsqueeze(1) # (batch, 1, hidden)
507
+ q = q.expand(-1, last_hidden_state.shape[1], -1) # (batch, seq_len, hidden)
508
+ attn_out: torch.Tensor = module.pooling_attn( # type: ignore
509
+ q=q, kv=last_hidden_state, attention_mask=attention_mask
510
+ ) # (batch, seq_len, hidden)
511
+ last_hidden_state = torch.mean(attn_out, dim=1)
512
+ elif config.classifier_pooling == "max_seq_mha":
513
+ k_hidden_states = hidden_states[-config.classifier_pooling_last_k :]
514
+ theta = torch.stack(k_hidden_states, dim=1) # (batch, k, seq_len, hidden)
515
+ pooled_seq = torch.max(theta, dim=1).values # Element-wise max over k -> (batch, seq_len, hidden)
516
+ # Query is pooled CLS token (position 0); Keys/Values are pooled sequence
517
+ q = pooled_seq[:, 0, :].unsqueeze(1) # (batch, 1, hidden)
518
+ q = q.expand(-1, pooled_seq.shape[1], -1) # (batch, seq_len, hidden)
519
+ attn_out: torch.Tensor = module.pooling_attn( # type: ignore
520
+ q=q, kv=pooled_seq, attention_mask=attention_mask
521
+ ) # (batch, seq_len, hidden)
522
+ last_hidden_state = torch.mean(attn_out, dim=1)
523
+ elif config.classifier_pooling == "max_seq_mean":
524
+ k_hidden_states = hidden_states[-config.classifier_pooling_last_k :]
525
+ theta = torch.stack(k_hidden_states, dim=1) # (batch, k, seq_len, hidden)
526
+ pooled_seq = torch.max(theta, dim=1).values # Element-wise max over k -> (batch, seq_len, hidden)
527
+ last_hidden_state = torch.mean(pooled_seq, dim=1) # Mean over sequence length
528
+ elif config.classifier_pooling == "sum_mean":
529
+ # ChemLM uses the mean of all hidden states
530
+ # which outperforms using just the last layer mean or the cls embedding
531
+ # https://doi.org/10.1038/s42004-025-01484-4
532
+ # https://static-content.springer.com/esm/art%3A10.1038%2Fs42004-025-01484-4/MediaObjects/42004_2025_1484_MOESM2_ESM.pdf
533
+ all_hidden_states = torch.stack(hidden_states)
534
+ w = torch.sum(all_hidden_states, dim=0)
535
+ last_hidden_state = torch.mean(w, dim=1)
536
+ elif config.classifier_pooling == "sum_sum":
537
+ all_hidden_states = torch.stack(hidden_states)
538
+ w = torch.sum(all_hidden_states, dim=0)
539
+ last_hidden_state = torch.sum(w, dim=1)
540
+ elif config.classifier_pooling == "mean_sum":
541
+ all_hidden_states = torch.stack(hidden_states)
542
+ w = torch.mean(all_hidden_states, dim=0)
543
+ last_hidden_state = torch.sum(w, dim=1)
544
+ elif config.classifier_pooling == "mean_mean":
545
+ all_hidden_states = torch.stack(hidden_states)
546
+ w = torch.mean(all_hidden_states, dim=0)
547
+ last_hidden_state = torch.mean(w, dim=1)
548
+ return last_hidden_state
549
+
550
+
551
+ __all__ = [
552
+ "ModChemBertForMaskedLM",
553
+ "ModChemBertForSequenceClassification",
554
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,2554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 256,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": "BatchLongest",
11
+ "direction": "Right",
12
+ "pad_to_multiple_of": 8,
13
+ "pad_id": 2,
14
+ "pad_type_id": 0,
15
+ "pad_token": "[PAD]"
16
+ },
17
+ "added_tokens": [
18
+ {
19
+ "id": 0,
20
+ "content": "[CLS]",
21
+ "single_word": false,
22
+ "lstrip": false,
23
+ "rstrip": false,
24
+ "normalized": false,
25
+ "special": true
26
+ },
27
+ {
28
+ "id": 1,
29
+ "content": "[SEP]",
30
+ "single_word": false,
31
+ "lstrip": false,
32
+ "rstrip": false,
33
+ "normalized": false,
34
+ "special": true
35
+ },
36
+ {
37
+ "id": 2,
38
+ "content": "[PAD]",
39
+ "single_word": false,
40
+ "lstrip": false,
41
+ "rstrip": false,
42
+ "normalized": false,
43
+ "special": true
44
+ },
45
+ {
46
+ "id": 3,
47
+ "content": "[MASK]",
48
+ "single_word": false,
49
+ "lstrip": false,
50
+ "rstrip": false,
51
+ "normalized": false,
52
+ "special": true
53
+ },
54
+ {
55
+ "id": 2361,
56
+ "content": "[UNK]",
57
+ "single_word": false,
58
+ "lstrip": false,
59
+ "rstrip": false,
60
+ "normalized": false,
61
+ "special": true
62
+ }
63
+ ],
64
+ "normalizer": null,
65
+ "pre_tokenizer": {
66
+ "type": "ByteLevel",
67
+ "add_prefix_space": false,
68
+ "trim_offsets": true,
69
+ "use_regex": true
70
+ },
71
+ "post_processor": {
72
+ "type": "TemplateProcessing",
73
+ "single": [
74
+ {
75
+ "SpecialToken": {
76
+ "id": "[CLS]",
77
+ "type_id": 0
78
+ }
79
+ },
80
+ {
81
+ "Sequence": {
82
+ "id": "A",
83
+ "type_id": 0
84
+ }
85
+ },
86
+ {
87
+ "SpecialToken": {
88
+ "id": "[SEP]",
89
+ "type_id": 0
90
+ }
91
+ }
92
+ ],
93
+ "pair": [
94
+ {
95
+ "SpecialToken": {
96
+ "id": "[CLS]",
97
+ "type_id": 0
98
+ }
99
+ },
100
+ {
101
+ "Sequence": {
102
+ "id": "A",
103
+ "type_id": 0
104
+ }
105
+ },
106
+ {
107
+ "SpecialToken": {
108
+ "id": "[SEP]",
109
+ "type_id": 0
110
+ }
111
+ },
112
+ {
113
+ "Sequence": {
114
+ "id": "B",
115
+ "type_id": 0
116
+ }
117
+ },
118
+ {
119
+ "SpecialToken": {
120
+ "id": "[SEP]",
121
+ "type_id": 0
122
+ }
123
+ }
124
+ ],
125
+ "special_tokens": {
126
+ "[CLS]": {
127
+ "id": "[CLS]",
128
+ "ids": [
129
+ 0
130
+ ],
131
+ "tokens": [
132
+ "[CLS]"
133
+ ]
134
+ },
135
+ "[MASK]": {
136
+ "id": "[MASK]",
137
+ "ids": [
138
+ 3
139
+ ],
140
+ "tokens": [
141
+ "[MASK]"
142
+ ]
143
+ },
144
+ "[PAD]": {
145
+ "id": "[PAD]",
146
+ "ids": [
147
+ 2
148
+ ],
149
+ "tokens": [
150
+ "[PAD]"
151
+ ]
152
+ },
153
+ "[SEP]": {
154
+ "id": "[SEP]",
155
+ "ids": [
156
+ 1
157
+ ],
158
+ "tokens": [
159
+ "[SEP]"
160
+ ]
161
+ },
162
+ "[UNK]": {
163
+ "id": "[UNK]",
164
+ "ids": [
165
+ 2361
166
+ ],
167
+ "tokens": [
168
+ "[UNK]"
169
+ ]
170
+ }
171
+ }
172
+ },
173
+ "decoder": {
174
+ "type": "ByteLevel",
175
+ "add_prefix_space": false,
176
+ "trim_offsets": true,
177
+ "use_regex": true
178
+ },
179
+ "model": {
180
+ "type": "BPE",
181
+ "dropout": null,
182
+ "unk_token": "[UNK]",
183
+ "continuing_subword_prefix": null,
184
+ "end_of_word_suffix": null,
185
+ "fuse_unk": false,
186
+ "byte_fallback": false,
187
+ "ignore_merges": false,
188
+ "vocab": {
189
+ "[CLS]": 0,
190
+ "[SEP]": 1,
191
+ "[PAD]": 2,
192
+ "[MASK]": 3,
193
+ "C": 4,
194
+ "c": 5,
195
+ "(": 6,
196
+ ")": 7,
197
+ "1": 8,
198
+ "O": 9,
199
+ "N": 10,
200
+ "2": 11,
201
+ "=": 12,
202
+ "n": 13,
203
+ "3": 14,
204
+ "[C@H]": 15,
205
+ "[C@@H]": 16,
206
+ "F": 17,
207
+ "S": 18,
208
+ "4": 19,
209
+ "Cl": 20,
210
+ "-": 21,
211
+ "o": 22,
212
+ "s": 23,
213
+ "[nH]": 24,
214
+ "#": 25,
215
+ "/": 26,
216
+ "Br": 27,
217
+ "[C@]": 28,
218
+ "[C@@]": 29,
219
+ "[N+]": 30,
220
+ "[O-]": 31,
221
+ "5": 32,
222
+ "\\": 33,
223
+ ".": 34,
224
+ "I": 35,
225
+ "6": 36,
226
+ "[S@]": 37,
227
+ "[S@@]": 38,
228
+ "P": 39,
229
+ "[N-]": 40,
230
+ "[Si]": 41,
231
+ "7": 42,
232
+ "[n+]": 43,
233
+ "[2H]": 44,
234
+ "8": 45,
235
+ "[NH+]": 46,
236
+ "B": 47,
237
+ "9": 48,
238
+ "[C-]": 49,
239
+ "[Na+]": 50,
240
+ "[Cl-]": 51,
241
+ "[c-]": 52,
242
+ "[CH]": 53,
243
+ "%10": 54,
244
+ "[NH2+]": 55,
245
+ "[P+]": 56,
246
+ "[B]": 57,
247
+ "[I-]": 58,
248
+ "%11": 59,
249
+ "[CH2-]": 60,
250
+ "[O+]": 61,
251
+ "[NH3+]": 62,
252
+ "[C]": 63,
253
+ "[Br-]": 64,
254
+ "[IH2]": 65,
255
+ "[S-]": 66,
256
+ "[cH-]": 67,
257
+ "%12": 68,
258
+ "[nH+]": 69,
259
+ "[B-]": 70,
260
+ "[K+]": 71,
261
+ "[Sn]": 72,
262
+ "[Se]": 73,
263
+ "[CH-]": 74,
264
+ "[HH]": 75,
265
+ "[Y]": 76,
266
+ "[n-]": 77,
267
+ "[CH3-]": 78,
268
+ "[SiH]": 79,
269
+ "[S+]": 80,
270
+ "%13": 81,
271
+ "[SiH2]": 82,
272
+ "[Li+]": 83,
273
+ "[NH-]": 84,
274
+ "%14": 85,
275
+ "[Na]": 86,
276
+ "[CH2]": 87,
277
+ "[O-2]": 88,
278
+ "[U+2]": 89,
279
+ "[W]": 90,
280
+ "[Al]": 91,
281
+ "[P@]": 92,
282
+ "[Fe+2]": 93,
283
+ "[PH+]": 94,
284
+ "%15": 95,
285
+ "[Cl+3]": 96,
286
+ "[Zn+2]": 97,
287
+ "[Ir]": 98,
288
+ "[Mg+2]": 99,
289
+ "[Pt+2]": 100,
290
+ "[OH2+]": 101,
291
+ "[As]": 102,
292
+ "[Fe]": 103,
293
+ "[OH+]": 104,
294
+ "[Zr+2]": 105,
295
+ "[3H]": 106,
296
+ "[Ge]": 107,
297
+ "[SiH3]": 108,
298
+ "[OH-]": 109,
299
+ "[NH4+]": 110,
300
+ "[Cu+2]": 111,
301
+ "[P@@]": 112,
302
+ "p": 113,
303
+ "[Pt]": 114,
304
+ "%16": 115,
305
+ "[Ca+2]": 116,
306
+ "[Zr]": 117,
307
+ "[F-]": 118,
308
+ "[C+]": 119,
309
+ "[Ti]": 120,
310
+ "[P-]": 121,
311
+ "[V]": 122,
312
+ "[se]": 123,
313
+ "[U]": 124,
314
+ "[O]": 125,
315
+ "[Ni+2]": 126,
316
+ "[Zn]": 127,
317
+ "[Co]": 128,
318
+ "[Ni]": 129,
319
+ "[Pd+2]": 130,
320
+ "[Cu]": 131,
321
+ "%17": 132,
322
+ "[Cu+]": 133,
323
+ "[Te]": 134,
324
+ "[H+]": 135,
325
+ "[CH+]": 136,
326
+ "[Li]": 137,
327
+ "[Pd]": 138,
328
+ "[Mo]": 139,
329
+ "[Ru+2]": 140,
330
+ "[o+]": 141,
331
+ "[Re]": 142,
332
+ "[SH+]": 143,
333
+ "%18": 144,
334
+ "[Ac]": 145,
335
+ "[Cr]": 146,
336
+ "[NH2-]": 147,
337
+ "[K]": 148,
338
+ "[13CH2]": 149,
339
+ "[c]": 150,
340
+ "[Zr+4]": 151,
341
+ "[Tl]": 152,
342
+ "[13C]": 153,
343
+ "[Mn]": 154,
344
+ "[N@+]": 155,
345
+ "[Hg]": 156,
346
+ "[Rh]": 157,
347
+ "[Ti+4]": 158,
348
+ "[Sb]": 159,
349
+ "[Co+2]": 160,
350
+ "[Ag+]": 161,
351
+ "[Ru]": 162,
352
+ "%19": 163,
353
+ "[N@@+]": 164,
354
+ "[Ti+2]": 165,
355
+ "[Al+3]": 166,
356
+ "[Pb]": 167,
357
+ "[I+]": 168,
358
+ "[18F]": 169,
359
+ "[s+]": 170,
360
+ "[Rb+]": 171,
361
+ "[Ba+2]": 172,
362
+ "[H-]": 173,
363
+ "[Fe+3]": 174,
364
+ "[Ir+3]": 175,
365
+ "[13cH]": 176,
366
+ "%20": 177,
367
+ "[AlH2]": 178,
368
+ "[Au+]": 179,
369
+ "[13c]": 180,
370
+ "[SH2+]": 181,
371
+ "[Sn+2]": 182,
372
+ "[Mn+2]": 183,
373
+ "[Si-]": 184,
374
+ "[Ag]": 185,
375
+ "[N]": 186,
376
+ "[Bi]": 187,
377
+ "%21": 188,
378
+ "[In]": 189,
379
+ "[CH2+]": 190,
380
+ "[Y+3]": 191,
381
+ "[Ga]": 192,
382
+ "%22": 193,
383
+ "[Co+3]": 194,
384
+ "[Au]": 195,
385
+ "[13CH3]": 196,
386
+ "[Mg]": 197,
387
+ "[Cs+]": 198,
388
+ "[W+2]": 199,
389
+ "[Hf]": 200,
390
+ "[Zn+]": 201,
391
+ "[Se-]": 202,
392
+ "[S-2]": 203,
393
+ "[Ca]": 204,
394
+ "[pH]": 205,
395
+ "[ClH+]": 206,
396
+ "[Ti+3]": 207,
397
+ "%23": 208,
398
+ "[Ru+]": 209,
399
+ "[SH-]": 210,
400
+ "[13CH]": 211,
401
+ "[IH+]": 212,
402
+ "[Hf+4]": 213,
403
+ "[Rf]": 214,
404
+ "[OH3+]": 215,
405
+ "%24": 216,
406
+ "[Pt+4]": 217,
407
+ "[Zr+3]": 218,
408
+ "[PH3+]": 219,
409
+ "[Sr+2]": 220,
410
+ "[Cd+2]": 221,
411
+ "[Cd]": 222,
412
+ "%25": 223,
413
+ "[Os]": 224,
414
+ "[BH-]": 225,
415
+ "[Sn+4]": 226,
416
+ "[Cr+3]": 227,
417
+ "[Ru+3]": 228,
418
+ "[PH2+]": 229,
419
+ "[Rh+2]": 230,
420
+ "[V+2]": 231,
421
+ "%26": 232,
422
+ "[Gd+3]": 233,
423
+ "[Pb+2]": 234,
424
+ "[PH]": 235,
425
+ "[Hg+]": 236,
426
+ "[Mo+2]": 237,
427
+ "[AlH]": 238,
428
+ "[Sn+]": 239,
429
+ "%27": 240,
430
+ "[Pd+]": 241,
431
+ "b": 242,
432
+ "[Rh+3]": 243,
433
+ "[Hg+2]": 244,
434
+ "[15NH]": 245,
435
+ "[14C]": 246,
436
+ "%28": 247,
437
+ "[Mn+3]": 248,
438
+ "[Si+]": 249,
439
+ "[SeH]": 250,
440
+ "[13C@H]": 251,
441
+ "[NH]": 252,
442
+ "[Ga+3]": 253,
443
+ "[SiH-]": 254,
444
+ "[13C@@H]": 255,
445
+ "[Ce]": 256,
446
+ "[Au+3]": 257,
447
+ "[Bi+3]": 258,
448
+ "[15N]": 259,
449
+ "%29": 260,
450
+ "[BH3-]": 261,
451
+ "[14cH]": 262,
452
+ "[Ti+]": 263,
453
+ "[Gd]": 264,
454
+ "[cH+]": 265,
455
+ "[Cr+2]": 266,
456
+ "[Sb-]": 267,
457
+ "%30": 268,
458
+ "[Be+2]": 269,
459
+ "[Al+]": 270,
460
+ "[te]": 271,
461
+ "[11CH3]": 272,
462
+ "[Sm]": 273,
463
+ "[Pr]": 274,
464
+ "[La]": 275,
465
+ "%31": 276,
466
+ "[Al-]": 277,
467
+ "[Ta]": 278,
468
+ "[125I]": 279,
469
+ "[BH2-]": 280,
470
+ "[Nb]": 281,
471
+ "[Si@]": 282,
472
+ "%32": 283,
473
+ "[14c]": 284,
474
+ "[Sb+3]": 285,
475
+ "[Ba]": 286,
476
+ "%33": 287,
477
+ "[Os+2]": 288,
478
+ "[Si@@]": 289,
479
+ "[La+3]": 290,
480
+ "[15n]": 291,
481
+ "[15NH2]": 292,
482
+ "[Nd+3]": 293,
483
+ "%34": 294,
484
+ "[14CH2]": 295,
485
+ "[18O]": 296,
486
+ "[Nd]": 297,
487
+ "[GeH]": 298,
488
+ "[Ni+3]": 299,
489
+ "[Eu]": 300,
490
+ "[Dy+3]": 301,
491
+ "[Sc]": 302,
492
+ "%36": 303,
493
+ "[Se-2]": 304,
494
+ "[As+]": 305,
495
+ "%35": 306,
496
+ "[AsH]": 307,
497
+ "[Tb]": 308,
498
+ "[Sb+5]": 309,
499
+ "[Se+]": 310,
500
+ "[Ce+3]": 311,
501
+ "[c+]": 312,
502
+ "[In+3]": 313,
503
+ "[SnH]": 314,
504
+ "[Mo+4]": 315,
505
+ "%37": 316,
506
+ "[V+4]": 317,
507
+ "[Eu+3]": 318,
508
+ "[Hf+2]": 319,
509
+ "%38": 320,
510
+ "[Pt+]": 321,
511
+ "[p+]": 322,
512
+ "[123I]": 323,
513
+ "[Tl+]": 324,
514
+ "[Sm+3]": 325,
515
+ "%39": 326,
516
+ "[Yb+3]": 327,
517
+ "%40": 328,
518
+ "[Yb]": 329,
519
+ "[Os+]": 330,
520
+ "%41": 331,
521
+ "[10B]": 332,
522
+ "[Sc+3]": 333,
523
+ "[Al+2]": 334,
524
+ "%42": 335,
525
+ "[Sr]": 336,
526
+ "[Tb+3]": 337,
527
+ "[Po]": 338,
528
+ "[Tc]": 339,
529
+ "[PH-]": 340,
530
+ "[AlH3]": 341,
531
+ "[Ar]": 342,
532
+ "[U+4]": 343,
533
+ "[SnH2]": 344,
534
+ "[Cl+2]": 345,
535
+ "[si]": 346,
536
+ "[Fe+]": 347,
537
+ "[14CH3]": 348,
538
+ "[U+3]": 349,
539
+ "[Cl+]": 350,
540
+ "%43": 351,
541
+ "[GeH2]": 352,
542
+ "%44": 353,
543
+ "[Er+3]": 354,
544
+ "[Mo+3]": 355,
545
+ "[I+2]": 356,
546
+ "[Fe+4]": 357,
547
+ "[99Tc]": 358,
548
+ "%45": 359,
549
+ "[11C]": 360,
550
+ "%46": 361,
551
+ "[SnH3]": 362,
552
+ "[S]": 363,
553
+ "[Te+]": 364,
554
+ "[Er]": 365,
555
+ "[Lu+3]": 366,
556
+ "[11B]": 367,
557
+ "%47": 368,
558
+ "%48": 369,
559
+ "[P]": 370,
560
+ "[Tm]": 371,
561
+ "[Th]": 372,
562
+ "[Dy]": 373,
563
+ "[Pr+3]": 374,
564
+ "[Ta+5]": 375,
565
+ "[Nb+5]": 376,
566
+ "[Rb]": 377,
567
+ "[GeH3]": 378,
568
+ "[Br+2]": 379,
569
+ "%49": 380,
570
+ "[131I]": 381,
571
+ "[Fm]": 382,
572
+ "[Cs]": 383,
573
+ "[BH4-]": 384,
574
+ "[Lu]": 385,
575
+ "[15nH]": 386,
576
+ "%50": 387,
577
+ "[Ru+6]": 388,
578
+ "[b-]": 389,
579
+ "[Ho]": 390,
580
+ "[Th+4]": 391,
581
+ "[Ru+4]": 392,
582
+ "%52": 393,
583
+ "[14CH]": 394,
584
+ "%51": 395,
585
+ "[Cr+6]": 396,
586
+ "[18OH]": 397,
587
+ "[Ho+3]": 398,
588
+ "[Ce+4]": 399,
589
+ "[Bi+2]": 400,
590
+ "[Co+]": 401,
591
+ "%53": 402,
592
+ "[Yb+2]": 403,
593
+ "[Fe+6]": 404,
594
+ "[Be]": 405,
595
+ "%54": 406,
596
+ "[SH3+]": 407,
597
+ "[Np]": 408,
598
+ "[As-]": 409,
599
+ "%55": 410,
600
+ "[14C@@H]": 411,
601
+ "[Ir+2]": 412,
602
+ "[GaH3]": 413,
603
+ "[p-]": 414,
604
+ "[GeH4]": 415,
605
+ "[Sn+3]": 416,
606
+ "[Os+4]": 417,
607
+ "%56": 418,
608
+ "[14C@H]": 419,
609
+ "[sH+]": 420,
610
+ "[19F]": 421,
611
+ "[Eu+2]": 422,
612
+ "[TlH]": 423,
613
+ "%57": 424,
614
+ "[Cr+4]": 425,
615
+ "%58": 426,
616
+ "[B@@-]": 427,
617
+ "[SiH+]": 428,
618
+ "[At]": 429,
619
+ "[Am]": 430,
620
+ "[Fe+5]": 431,
621
+ "[AsH2]": 432,
622
+ "[Si+4]": 433,
623
+ "[B@-]": 434,
624
+ "[Pu]": 435,
625
+ "[SbH]": 436,
626
+ "[P-2]": 437,
627
+ "[Tm+3]": 438,
628
+ "*": 439,
629
+ "%59": 440,
630
+ "[se+]": 441,
631
+ "%60": 442,
632
+ "[oH+]": 443,
633
+ "[1H]": 444,
634
+ "[15N+]": 445,
635
+ "[124I]": 446,
636
+ "[S@@+]": 447,
637
+ "[P-3]": 448,
638
+ "[H]": 449,
639
+ "[IH2+]": 450,
640
+ "[TeH]": 451,
641
+ "[Xe]": 452,
642
+ "[PH4+]": 453,
643
+ "[Cr+]": 454,
644
+ "[Cm]": 455,
645
+ "[I+3]": 456,
646
+ "%61": 457,
647
+ "[Nb+2]": 458,
648
+ "[Ru+5]": 459,
649
+ "%62": 460,
650
+ "[Ta+2]": 461,
651
+ "[Tc+4]": 462,
652
+ "[CH3+]": 463,
653
+ "[Pm]": 464,
654
+ "[Si@H]": 465,
655
+ "[No]": 466,
656
+ "%63": 467,
657
+ "[Cr+5]": 468,
658
+ "[Th+2]": 469,
659
+ "[Zn-2]": 470,
660
+ "[13C@]": 471,
661
+ "[Lr]": 472,
662
+ "%64": 473,
663
+ "[99Tc+3]": 474,
664
+ "%65": 475,
665
+ "[13C@@]": 476,
666
+ "%66": 477,
667
+ "[Fe-]": 478,
668
+ "[17O]": 479,
669
+ "[siH]": 480,
670
+ "[Sb+]": 481,
671
+ "[OH]": 482,
672
+ "[IH]": 483,
673
+ "[11CH2]": 484,
674
+ "[Cf]": 485,
675
+ "[SiH2+]": 486,
676
+ "[Gd+2]": 487,
677
+ "[In+]": 488,
678
+ "[Si@@H]": 489,
679
+ "[Mn+]": 490,
680
+ "[99Tc+4]": 491,
681
+ "[Ga-]": 492,
682
+ "%67": 493,
683
+ "[S@+]": 494,
684
+ "[Ge+4]": 495,
685
+ "[Tl+3]": 496,
686
+ "[16OH]": 497,
687
+ "%68": 498,
688
+ "[2H-]": 499,
689
+ "[Ra]": 500,
690
+ "[si-]": 501,
691
+ "[NiH2]": 502,
692
+ "[P@@H]": 503,
693
+ "[Rh+]": 504,
694
+ "[12C]": 505,
695
+ "[35S]": 506,
696
+ "[32P]": 507,
697
+ "[SiH2-]": 508,
698
+ "[AlH2+]": 509,
699
+ "[16O]": 510,
700
+ "%69": 511,
701
+ "[BiH]": 512,
702
+ "[BiH2]": 513,
703
+ "[Zn-]": 514,
704
+ "[BH]": 515,
705
+ "[Tc+3]": 516,
706
+ "[Ir+]": 517,
707
+ "[Ni+]": 518,
708
+ "%70": 519,
709
+ "[InH2]": 520,
710
+ "[InH]": 521,
711
+ "[Nb+3]": 522,
712
+ "[PbH]": 523,
713
+ "[Bi+]": 524,
714
+ "%71": 525,
715
+ "[As+3]": 526,
716
+ "%72": 527,
717
+ "[18O-]": 528,
718
+ "[68Ga+3]": 529,
719
+ "%73": 530,
720
+ "[Pa]": 531,
721
+ "[76Br]": 532,
722
+ "[Tc+5]": 533,
723
+ "[pH+]": 534,
724
+ "[64Cu+2]": 535,
725
+ "[Ru+8]": 536,
726
+ "%74": 537,
727
+ "[PH2-]": 538,
728
+ "[Si+2]": 539,
729
+ "[17OH]": 540,
730
+ "[RuH]": 541,
731
+ "[111In+3]": 542,
732
+ "[AlH+]": 543,
733
+ "%75": 544,
734
+ "%76": 545,
735
+ "[W+]": 546,
736
+ "[SbH2]": 547,
737
+ "[PoH]": 548,
738
+ "[Ru-]": 549,
739
+ "[XeH]": 550,
740
+ "[Tc+2]": 551,
741
+ "[13C-]": 552,
742
+ "[Br+]": 553,
743
+ "[Pt-2]": 554,
744
+ "[Es]": 555,
745
+ "[Cu-]": 556,
746
+ "[Mg+]": 557,
747
+ "[3HH]": 558,
748
+ "[P@H]": 559,
749
+ "[ClH2+]": 560,
750
+ "%77": 561,
751
+ "[SH]": 562,
752
+ "[Au-]": 563,
753
+ "[2HH]": 564,
754
+ "%78": 565,
755
+ "[Sn-]": 566,
756
+ "[11CH]": 567,
757
+ "[PdH2]": 568,
758
+ "0": 569,
759
+ "[Os+6]": 570,
760
+ "%79": 571,
761
+ "[Mo+]": 572,
762
+ "%80": 573,
763
+ "[al]": 574,
764
+ "[PbH2]": 575,
765
+ "[64Cu]": 576,
766
+ "[Cl]": 577,
767
+ "[12CH3]": 578,
768
+ "%81": 579,
769
+ "[Tc+7]": 580,
770
+ "[11c]": 581,
771
+ "%82": 582,
772
+ "[Li-]": 583,
773
+ "[99Tc+5]": 584,
774
+ "[He]": 585,
775
+ "[12c]": 586,
776
+ "[Kr]": 587,
777
+ "[RuH+2]": 588,
778
+ "[35Cl]": 589,
779
+ "[Pd-2]": 590,
780
+ "[GaH2]": 591,
781
+ "[4H]": 592,
782
+ "[Sg]": 593,
783
+ "[Cu-2]": 594,
784
+ "[Br+3]": 595,
785
+ "%83": 596,
786
+ "[37Cl]": 597,
787
+ "[211At]": 598,
788
+ "[IrH+2]": 599,
789
+ "[Mt]": 600,
790
+ "[Ir-2]": 601,
791
+ "[In-]": 602,
792
+ "[12cH]": 603,
793
+ "[12CH2]": 604,
794
+ "[RuH2]": 605,
795
+ "[99Tc+7]": 606,
796
+ "%84": 607,
797
+ "[15n+]": 608,
798
+ "[ClH2+2]": 609,
799
+ "[16N]": 610,
800
+ "[111In]": 611,
801
+ "[Tc+]": 612,
802
+ "[Ru-2]": 613,
803
+ "[12CH]": 614,
804
+ "[si+]": 615,
805
+ "[Tc+6]": 616,
806
+ "%85": 617,
807
+ "%86": 618,
808
+ "[90Y]": 619,
809
+ "[Pd-]": 620,
810
+ "[188Re]": 621,
811
+ "[RuH+]": 622,
812
+ "[NiH]": 623,
813
+ "[SiH3-]": 624,
814
+ "[14n]": 625,
815
+ "[CH3]": 626,
816
+ "[14N]": 627,
817
+ "[10BH2]": 628,
818
+ "%88": 629,
819
+ "%89": 630,
820
+ "%90": 631,
821
+ "[34S]": 632,
822
+ "[77Br]": 633,
823
+ "[GaH]": 634,
824
+ "[Br]": 635,
825
+ "[Ge@]": 636,
826
+ "[B@@H-]": 637,
827
+ "[CuH]": 638,
828
+ "[SiH4]": 639,
829
+ "[3H-]": 640,
830
+ "%87": 641,
831
+ "%91": 642,
832
+ "%92": 643,
833
+ "[67Cu]": 644,
834
+ "[I]": 645,
835
+ "[177Lu]": 646,
836
+ "[ReH]": 647,
837
+ "[67Ga+3]": 648,
838
+ "[Db]": 649,
839
+ "[177Lu+3]": 650,
840
+ "[AlH2-]": 651,
841
+ "[Si+3]": 652,
842
+ "[Ti-2]": 653,
843
+ "[RuH+3]": 654,
844
+ "[al+]": 655,
845
+ "[68Ga]": 656,
846
+ "[2H+]": 657,
847
+ "[B@H-]": 658,
848
+ "[WH2]": 659,
849
+ "[OsH]": 660,
850
+ "[Ir-3]": 661,
851
+ "[AlH-]": 662,
852
+ "[Bk]": 663,
853
+ "[75Se]": 664,
854
+ "[14C@]": 665,
855
+ "[Pt-]": 666,
856
+ "[N@@H+]": 667,
857
+ "[Nb-]": 668,
858
+ "[13NH2]": 669,
859
+ "%93": 670,
860
+ "[186Re]": 671,
861
+ "[Tb+4]": 672,
862
+ "[PtH]": 673,
863
+ "[IrH2]": 674,
864
+ "[Hg-2]": 675,
865
+ "[AlH3-]": 676,
866
+ "[PdH+]": 677,
867
+ "[Md]": 678,
868
+ "[RhH+2]": 679,
869
+ "[11cH]": 680,
870
+ "[Co-2]": 681,
871
+ "[15N-]": 682,
872
+ "[ZrH2]": 683,
873
+ "%94": 684,
874
+ "[Hg-]": 685,
875
+ "[127I]": 686,
876
+ "[AsH2+]": 687,
877
+ "[MoH2]": 688,
878
+ "[Te+4]": 689,
879
+ "[14C@@]": 690,
880
+ "[As+5]": 691,
881
+ "[SnH+3]": 692,
882
+ "[Ge@@]": 693,
883
+ "[6Li+]": 694,
884
+ "[WH]": 695,
885
+ "[Ne]": 696,
886
+ "[14NH2]": 697,
887
+ "[14NH]": 698,
888
+ "[12C@@H]": 699,
889
+ "[Os+7]": 700,
890
+ "[RhH]": 701,
891
+ "[Al-3]": 702,
892
+ "[SnH+]": 703,
893
+ "[15NH3+]": 704,
894
+ "[Zr+]": 705,
895
+ "[197Hg+]": 706,
896
+ "%95": 707,
897
+ "%96": 708,
898
+ "[90Y+3]": 709,
899
+ "[Os-2]": 710,
900
+ "[98Tc+5]": 711,
901
+ "[15NH3]": 712,
902
+ "[bH-]": 713,
903
+ "[33P]": 714,
904
+ "[Zr-2]": 715,
905
+ "[15O]": 716,
906
+ "[Rh-]": 717,
907
+ "[PbH3]": 718,
908
+ "[PH2]": 719,
909
+ "[Ni-]": 720,
910
+ "[CuH+]": 721,
911
+ "%97": 722,
912
+ "%98": 723,
913
+ "%99": 724,
914
+ "[Os+5]": 725,
915
+ "[PtH+]": 726,
916
+ "[ReH4]": 727,
917
+ "[16NH]": 728,
918
+ "[82Br]": 729,
919
+ "[W-]": 730,
920
+ "[18F-]": 731,
921
+ "[15NH4+]": 732,
922
+ "[Se+4]": 733,
923
+ "[SeH-]": 734,
924
+ "[67Cu+2]": 735,
925
+ "[12C@H]": 736,
926
+ "[AsH3]": 737,
927
+ "[HgH]": 738,
928
+ "[10B-]": 739,
929
+ "[99Tc+6]": 740,
930
+ "[117Sn+4]": 741,
931
+ "[Te@]": 742,
932
+ "[P@+]": 743,
933
+ "[35SH]": 744,
934
+ "[SeH+]": 745,
935
+ "[Ni-2]": 746,
936
+ "[Al-2]": 747,
937
+ "[TeH2]": 748,
938
+ "[Bh]": 749,
939
+ "[99Tc+2]": 750,
940
+ "[Os+8]": 751,
941
+ "[PH-2]": 752,
942
+ "[7Li+]": 753,
943
+ "[14nH]": 754,
944
+ "[AlH+2]": 755,
945
+ "[18FH]": 756,
946
+ "[SnH4]": 757,
947
+ "[18O-2]": 758,
948
+ "[IrH]": 759,
949
+ "[13N]": 760,
950
+ "[Te@@]": 761,
951
+ "[Rh-3]": 762,
952
+ "[15NH+]": 763,
953
+ "[AsH3+]": 764,
954
+ "[SeH2]": 765,
955
+ "[AsH+]": 766,
956
+ "[CoH2]": 767,
957
+ "[16NH2]": 768,
958
+ "[AsH-]": 769,
959
+ "[203Hg+]": 770,
960
+ "[P@@+]": 771,
961
+ "[166Ho+3]": 772,
962
+ "[60Co+3]": 773,
963
+ "[13CH2-]": 774,
964
+ "[SeH2+]": 775,
965
+ "[75Br]": 776,
966
+ "[TlH2]": 777,
967
+ "[80Br]": 778,
968
+ "[siH+]": 779,
969
+ "[Ca+]": 780,
970
+ "[153Sm+3]": 781,
971
+ "[PdH]": 782,
972
+ "[225Ac]": 783,
973
+ "[13CH3-]": 784,
974
+ "[AlH4-]": 785,
975
+ "[FeH]": 786,
976
+ "[13CH-]": 787,
977
+ "[14C-]": 788,
978
+ "[11C-]": 789,
979
+ "[153Sm]": 790,
980
+ "[Re-]": 791,
981
+ "[te+]": 792,
982
+ "[13CH4]": 793,
983
+ "[ClH+2]": 794,
984
+ "[8CH2]": 795,
985
+ "[99Mo]": 796,
986
+ "[ClH3+3]": 797,
987
+ "[SbH3]": 798,
988
+ "[25Mg+2]": 799,
989
+ "[16N+]": 800,
990
+ "[SnH2+]": 801,
991
+ "[11C@H]": 802,
992
+ "[122I]": 803,
993
+ "[Re-2]": 804,
994
+ "[RuH2+2]": 805,
995
+ "[ZrH]": 806,
996
+ "[Bi-]": 807,
997
+ "[Pr+]": 808,
998
+ "[Rn]": 809,
999
+ "[Fr]": 810,
1000
+ "[36Cl]": 811,
1001
+ "[18o]": 812,
1002
+ "[YH]": 813,
1003
+ "[79Br]": 814,
1004
+ "[121I]": 815,
1005
+ "[113In+3]": 816,
1006
+ "[TaH]": 817,
1007
+ "[RhH2]": 818,
1008
+ "[Ta-]": 819,
1009
+ "[67Ga]": 820,
1010
+ "[ZnH+]": 821,
1011
+ "[SnH2-]": 822,
1012
+ "[OsH2]": 823,
1013
+ "[16F]": 824,
1014
+ "[FeH2]": 825,
1015
+ "[14O]": 826,
1016
+ "[PbH2+2]": 827,
1017
+ "[BH2]": 828,
1018
+ "[6H]": 829,
1019
+ "[125Te]": 830,
1020
+ "[197Hg]": 831,
1021
+ "[TaH2]": 832,
1022
+ "[TaH3]": 833,
1023
+ "[76As]": 834,
1024
+ "[Nb-2]": 835,
1025
+ "[14N+]": 836,
1026
+ "[125I-]": 837,
1027
+ "[33S]": 838,
1028
+ "[IH2+2]": 839,
1029
+ "[NH2]": 840,
1030
+ "[PtH2]": 841,
1031
+ "[MnH]": 842,
1032
+ "[19C]": 843,
1033
+ "[17F]": 844,
1034
+ "[1H-]": 845,
1035
+ "[SnH4+2]": 846,
1036
+ "[Mn-2]": 847,
1037
+ "[15NH2+]": 848,
1038
+ "[TiH2]": 849,
1039
+ "[ReH7]": 850,
1040
+ "[Cd-2]": 851,
1041
+ "[Fe-3]": 852,
1042
+ "[SH2]": 853,
1043
+ "[17O-]": 854,
1044
+ "[siH-]": 855,
1045
+ "[CoH+]": 856,
1046
+ "[VH]": 857,
1047
+ "[10BH]": 858,
1048
+ "[Ru-3]": 859,
1049
+ "[13O]": 860,
1050
+ "[5H]": 861,
1051
+ "[15n-]": 862,
1052
+ "[153Gd]": 863,
1053
+ "[12C@]": 864,
1054
+ "[11CH3-]": 865,
1055
+ "[IrH3]": 866,
1056
+ "[RuH3]": 867,
1057
+ "[74Se]": 868,
1058
+ "[Se@]": 869,
1059
+ "[Hf+]": 870,
1060
+ "[77Se]": 871,
1061
+ "[166Ho]": 872,
1062
+ "[59Fe+2]": 873,
1063
+ "[203Hg]": 874,
1064
+ "[18OH-]": 875,
1065
+ "[8CH]": 876,
1066
+ "[12C@@]": 877,
1067
+ "[11CH4]": 878,
1068
+ "[15C]": 879,
1069
+ "[249Cf]": 880,
1070
+ "[PbH4]": 881,
1071
+ "[64Zn]": 882,
1072
+ "[99Tc+]": 883,
1073
+ "[14c-]": 884,
1074
+ "[149Pm]": 885,
1075
+ "[IrH4]": 886,
1076
+ "[Se@@]": 887,
1077
+ "[13OH]": 888,
1078
+ "[14CH3-]": 889,
1079
+ "[28Si]": 890,
1080
+ "[Rh-2]": 891,
1081
+ "[Fe-2]": 892,
1082
+ "[131I-]": 893,
1083
+ "[51Cr]": 894,
1084
+ "[62Cu+2]": 895,
1085
+ "[81Br]": 896,
1086
+ "[121Sb]": 897,
1087
+ "[7Li]": 898,
1088
+ "[89Zr+4]": 899,
1089
+ "[SbH3+]": 900,
1090
+ "[11C@@H]": 901,
1091
+ "[98Tc]": 902,
1092
+ "[59Fe+3]": 903,
1093
+ "[BiH2+]": 904,
1094
+ "[SbH+]": 905,
1095
+ "[TiH]": 906,
1096
+ "[14NH3]": 907,
1097
+ "[15OH]": 908,
1098
+ "[119Sn]": 909,
1099
+ "[201Hg]": 910,
1100
+ "[MnH+]": 911,
1101
+ "[201Tl]": 912,
1102
+ "[51Cr+3]": 913,
1103
+ "[123I-]": 914,
1104
+ "[MoH]": 915,
1105
+ "[AlH6-3]": 916,
1106
+ "[MnH2]": 917,
1107
+ "[WH3]": 918,
1108
+ "[213Bi+3]": 919,
1109
+ "[SnH2+2]": 920,
1110
+ "[123IH]": 921,
1111
+ "[13CH+]": 922,
1112
+ "[Zr-]": 923,
1113
+ "[74As]": 924,
1114
+ "[13C+]": 925,
1115
+ "[32P+]": 926,
1116
+ "[KrH]": 927,
1117
+ "[SiH+2]": 928,
1118
+ "[ClH3+2]": 929,
1119
+ "[13NH]": 930,
1120
+ "[9CH2]": 931,
1121
+ "[ZrH2+2]": 932,
1122
+ "[87Sr+2]": 933,
1123
+ "[35s]": 934,
1124
+ "[239Pu]": 935,
1125
+ "[198Au]": 936,
1126
+ "[241Am]": 937,
1127
+ "[203Hg+2]": 938,
1128
+ "[V+]": 939,
1129
+ "[YH2]": 940,
1130
+ "[195Pt]": 941,
1131
+ "[203Pb]": 942,
1132
+ "[RuH4]": 943,
1133
+ "[ThH2]": 944,
1134
+ "[AuH]": 945,
1135
+ "[66Ga+3]": 946,
1136
+ "[11B-]": 947,
1137
+ "[F]": 948,
1138
+ "[24Na+]": 949,
1139
+ "[85Sr+2]": 950,
1140
+ "[201Tl+]": 951,
1141
+ "[14CH4]": 952,
1142
+ "[32S]": 953,
1143
+ "[TeH2+]": 954,
1144
+ "[ClH2+3]": 955,
1145
+ "[AgH]": 956,
1146
+ "[Ge@H]": 957,
1147
+ "[44Ca+2]": 958,
1148
+ "[Os-]": 959,
1149
+ "[31P]": 960,
1150
+ "[15nH+]": 961,
1151
+ "[SbH4]": 962,
1152
+ "[TiH+]": 963,
1153
+ "[Ba+]": 964,
1154
+ "[57Co+2]": 965,
1155
+ "[Ta+]": 966,
1156
+ "[125IH]": 967,
1157
+ "[77As]": 968,
1158
+ "[129I]": 969,
1159
+ "[Fe-4]": 970,
1160
+ "[Ta-2]": 971,
1161
+ "[19O]": 972,
1162
+ "[12O]": 973,
1163
+ "[BiH3]": 974,
1164
+ "[237Np]": 975,
1165
+ "[252Cf]": 976,
1166
+ "[86Y]": 977,
1167
+ "[Cr-2]": 978,
1168
+ "[89Y]": 979,
1169
+ "[195Pt+2]": 980,
1170
+ "[si+2]": 981,
1171
+ "[58Fe+2]": 982,
1172
+ "[Hs]": 983,
1173
+ "[S@@H]": 984,
1174
+ "[8CH4]": 985,
1175
+ "[164Dy+3]": 986,
1176
+ "[47Ca+2]": 987,
1177
+ "[57Co]": 988,
1178
+ "[NbH2]": 989,
1179
+ "[ReH2]": 990,
1180
+ "[ZnH2]": 991,
1181
+ "[CrH2]": 992,
1182
+ "[17NH]": 993,
1183
+ "[ZrH3]": 994,
1184
+ "[RhH3]": 995,
1185
+ "[12C-]": 996,
1186
+ "[18O+]": 997,
1187
+ "[Bi-2]": 998,
1188
+ "[ClH4+3]": 999,
1189
+ "[Ni-3]": 1000,
1190
+ "[Ag-]": 1001,
1191
+ "[111In-]": 1002,
1192
+ "[Mo-2]": 1003,
1193
+ "[55Fe+3]": 1004,
1194
+ "[204Hg+]": 1005,
1195
+ "[35Cl-]": 1006,
1196
+ "[211Pb]": 1007,
1197
+ "[75Ge]": 1008,
1198
+ "[8B]": 1009,
1199
+ "[TeH3]": 1010,
1200
+ "[SnH3+]": 1011,
1201
+ "[Zr-3]": 1012,
1202
+ "[28F]": 1013,
1203
+ "[249Bk]": 1014,
1204
+ "[169Yb]": 1015,
1205
+ "[34SH]": 1016,
1206
+ "[6Li]": 1017,
1207
+ "[94Tc]": 1018,
1208
+ "[197Au]": 1019,
1209
+ "[195Pt+4]": 1020,
1210
+ "[169Yb+3]": 1021,
1211
+ "[32Cl]": 1022,
1212
+ "[82Se]": 1023,
1213
+ "[159Gd+3]": 1024,
1214
+ "[213Bi]": 1025,
1215
+ "[CoH+2]": 1026,
1216
+ "[36S]": 1027,
1217
+ "[35P]": 1028,
1218
+ "[Ru-4]": 1029,
1219
+ "[Cr-3]": 1030,
1220
+ "[60Co]": 1031,
1221
+ "[1H+]": 1032,
1222
+ "[18CH2]": 1033,
1223
+ "[Cd-]": 1034,
1224
+ "[152Sm+3]": 1035,
1225
+ "[106Ru]": 1036,
1226
+ "[238Pu]": 1037,
1227
+ "[220Rn]": 1038,
1228
+ "[45Ca+2]": 1039,
1229
+ "[89Sr+2]": 1040,
1230
+ "[239Np]": 1041,
1231
+ "[90Sr+2]": 1042,
1232
+ "[137Cs+]": 1043,
1233
+ "[165Dy]": 1044,
1234
+ "[68GaH3]": 1045,
1235
+ "[65Zn+2]": 1046,
1236
+ "[89Zr]": 1047,
1237
+ "[BiH2+2]": 1048,
1238
+ "[62Cu]": 1049,
1239
+ "[165Dy+3]": 1050,
1240
+ "[238U]": 1051,
1241
+ "[105Rh+3]": 1052,
1242
+ "[70Zn]": 1053,
1243
+ "[12B]": 1054,
1244
+ "[12OH]": 1055,
1245
+ "[18CH]": 1056,
1246
+ "[17CH]": 1057,
1247
+ "[42K]": 1058,
1248
+ "[76Br-]": 1059,
1249
+ "[71As]": 1060,
1250
+ "[NbH3]": 1061,
1251
+ "[ReH3]": 1062,
1252
+ "[OsH-]": 1063,
1253
+ "[WH4]": 1064,
1254
+ "[MoH3]": 1065,
1255
+ "[OsH4]": 1066,
1256
+ "[RuH6]": 1067,
1257
+ "[PtH3]": 1068,
1258
+ "[CuH2]": 1069,
1259
+ "[CoH3]": 1070,
1260
+ "[TiH4]": 1071,
1261
+ "[64Zn+2]": 1072,
1262
+ "[Si-2]": 1073,
1263
+ "[79BrH]": 1074,
1264
+ "[14CH2-]": 1075,
1265
+ "[PtH2+2]": 1076,
1266
+ "[Os-3]": 1077,
1267
+ "[29Si]": 1078,
1268
+ "[Ti-]": 1079,
1269
+ "[Se+6]": 1080,
1270
+ "[22Na+]": 1081,
1271
+ "[42K+]": 1082,
1272
+ "[131Cs+]": 1083,
1273
+ "[86Rb+]": 1084,
1274
+ "[134Cs+]": 1085,
1275
+ "[209Po]": 1086,
1276
+ "[208Po]": 1087,
1277
+ "[81Rb+]": 1088,
1278
+ "[203Tl+]": 1089,
1279
+ "[Zr-4]": 1090,
1280
+ "[148Sm]": 1091,
1281
+ "[147Sm]": 1092,
1282
+ "[37Cl-]": 1093,
1283
+ "[12CH4]": 1094,
1284
+ "[Ge@@H]": 1095,
1285
+ "[63Cu]": 1096,
1286
+ "[13CH2+]": 1097,
1287
+ "[AsH2-]": 1098,
1288
+ "[CeH]": 1099,
1289
+ "[SnH-]": 1100,
1290
+ "[UH]": 1101,
1291
+ "[9c]": 1102,
1292
+ "[21CH3]": 1103,
1293
+ "[TeH+]": 1104,
1294
+ "[57Co+3]": 1105,
1295
+ "[8BH2]": 1106,
1296
+ "[12BH2]": 1107,
1297
+ "[19BH2]": 1108,
1298
+ "[9BH2]": 1109,
1299
+ "[YbH2]": 1110,
1300
+ "[CrH+2]": 1111,
1301
+ "[208Bi]": 1112,
1302
+ "[152Gd]": 1113,
1303
+ "[61Cu]": 1114,
1304
+ "[115In]": 1115,
1305
+ "[60Co+2]": 1116,
1306
+ "[13NH2-]": 1117,
1307
+ "[120I]": 1118,
1308
+ "[18OH2]": 1119,
1309
+ "[75SeH]": 1120,
1310
+ "[SbH2+]": 1121,
1311
+ "[144Ce]": 1122,
1312
+ "[16n]": 1123,
1313
+ "[113In]": 1124,
1314
+ "[22nH]": 1125,
1315
+ "[129I-]": 1126,
1316
+ "[InH3]": 1127,
1317
+ "[32PH3]": 1128,
1318
+ "[234U]": 1129,
1319
+ "[235U]": 1130,
1320
+ "[59Fe]": 1131,
1321
+ "[82Rb+]": 1132,
1322
+ "[65Zn]": 1133,
1323
+ "[244Cm]": 1134,
1324
+ "[147Pm]": 1135,
1325
+ "[91Y]": 1136,
1326
+ "[237Pu]": 1137,
1327
+ "[231Pa]": 1138,
1328
+ "[253Cf]": 1139,
1329
+ "[127Te]": 1140,
1330
+ "[187Re]": 1141,
1331
+ "[236Np]": 1142,
1332
+ "[235Np]": 1143,
1333
+ "[72Zn]": 1144,
1334
+ "[253Es]": 1145,
1335
+ "[159Dy]": 1146,
1336
+ "[62Zn]": 1147,
1337
+ "[101Tc]": 1148,
1338
+ "[149Tb]": 1149,
1339
+ "[124I-]": 1150,
1340
+ "[SeH3+]": 1151,
1341
+ "[210Pb]": 1152,
1342
+ "[40K]": 1153,
1343
+ "[210Po]": 1154,
1344
+ "[214Pb]": 1155,
1345
+ "[218Po]": 1156,
1346
+ "[214Po]": 1157,
1347
+ "[7Be]": 1158,
1348
+ "[212Pb]": 1159,
1349
+ "[205Pb]": 1160,
1350
+ "[209Pb]": 1161,
1351
+ "[123Te]": 1162,
1352
+ "[202Pb]": 1163,
1353
+ "[72As]": 1164,
1354
+ "[201Pb]": 1165,
1355
+ "[70As]": 1166,
1356
+ "[73Ge]": 1167,
1357
+ "[200Pb]": 1168,
1358
+ "[198Pb]": 1169,
1359
+ "[66Ga]": 1170,
1360
+ "[73Se]": 1171,
1361
+ "[195Pb]": 1172,
1362
+ "[199Pb]": 1173,
1363
+ "[144Ce+3]": 1174,
1364
+ "[235U+2]": 1175,
1365
+ "[90Tc]": 1176,
1366
+ "[114In+3]": 1177,
1367
+ "[128I]": 1178,
1368
+ "[100Tc+]": 1179,
1369
+ "[82Br-]": 1180,
1370
+ "[191Pt+2]": 1181,
1371
+ "[191Pt+4]": 1182,
1372
+ "[193Pt+4]": 1183,
1373
+ "[31PH3]": 1184,
1374
+ "[125I+2]": 1185,
1375
+ "[131I+2]": 1186,
1376
+ "[125Te+4]": 1187,
1377
+ "[82Sr+2]": 1188,
1378
+ "[149Sm]": 1189,
1379
+ "[81BrH]": 1190,
1380
+ "[129Xe]": 1191,
1381
+ "[193Pt+2]": 1192,
1382
+ "[123I+2]": 1193,
1383
+ "[Cr-]": 1194,
1384
+ "[Co-]": 1195,
1385
+ "[227Th+4]": 1196,
1386
+ "[249Cf+3]": 1197,
1387
+ "[252Cf+3]": 1198,
1388
+ "[187Os]": 1199,
1389
+ "[16O-]": 1200,
1390
+ "[17O+]": 1201,
1391
+ "[16OH-]": 1202,
1392
+ "[98Tc+7]": 1203,
1393
+ "[58Co+2]": 1204,
1394
+ "[69Ga+3]": 1205,
1395
+ "[57Fe+2]": 1206,
1396
+ "[43K+]": 1207,
1397
+ "[16C]": 1208,
1398
+ "[52Fe+3]": 1209,
1399
+ "[SeH5]": 1210,
1400
+ "[194Pb]": 1211,
1401
+ "[196Pb]": 1212,
1402
+ "[197Pb]": 1213,
1403
+ "[213Pb]": 1214,
1404
+ "[9B]": 1215,
1405
+ "[19B]": 1216,
1406
+ "[11CH-]": 1217,
1407
+ "[9CH]": 1218,
1408
+ "[20OH]": 1219,
1409
+ "[25OH]": 1220,
1410
+ "[8cH]": 1221,
1411
+ "[TiH+3]": 1222,
1412
+ "[SnH6+3]": 1223,
1413
+ "[N@H+]": 1224,
1414
+ "[52Mn+2]": 1225,
1415
+ "[64Ga]": 1226,
1416
+ "[13B]": 1227,
1417
+ "[216Bi]": 1228,
1418
+ "[117Sn+2]": 1229,
1419
+ "[232Th]": 1230,
1420
+ "[SnH+2]": 1231,
1421
+ "[BiH5]": 1232,
1422
+ "[77Kr]": 1233,
1423
+ "[103Cd]": 1234,
1424
+ "[62Ni]": 1235,
1425
+ "[LaH3]": 1236,
1426
+ "[SmH3]": 1237,
1427
+ "[EuH3]": 1238,
1428
+ "[MoH5]": 1239,
1429
+ "[64Ni]": 1240,
1430
+ "[66Zn]": 1241,
1431
+ "[68Zn]": 1242,
1432
+ "[186W]": 1243,
1433
+ "[FeH4]": 1244,
1434
+ "[MoH4]": 1245,
1435
+ "[HgH2]": 1246,
1436
+ "[15NH2-]": 1247,
1437
+ "[UH2]": 1248,
1438
+ "[204Hg]": 1249,
1439
+ "[GaH4-]": 1250,
1440
+ "[ThH4]": 1251,
1441
+ "[WH6]": 1252,
1442
+ "[PtH4]": 1253,
1443
+ "[VH2]": 1254,
1444
+ "[UH3]": 1255,
1445
+ "[FeH3]": 1256,
1446
+ "[RuH5]": 1257,
1447
+ "[BiH4]": 1258,
1448
+ "[80Br-]": 1259,
1449
+ "[CeH3]": 1260,
1450
+ "[37ClH]": 1261,
1451
+ "[157Gd+3]": 1262,
1452
+ "[205Tl]": 1263,
1453
+ "[203Tl]": 1264,
1454
+ "[62Cu+]": 1265,
1455
+ "[64Cu+]": 1266,
1456
+ "[61Cu+]": 1267,
1457
+ "[37SH2]": 1268,
1458
+ "[30Si]": 1269,
1459
+ "[28Al]": 1270,
1460
+ "[19OH2]": 1271,
1461
+ "[8He]": 1272,
1462
+ "[6He]": 1273,
1463
+ "[153Pm]": 1274,
1464
+ "[209Bi]": 1275,
1465
+ "[66Zn+2]": 1276,
1466
+ "[10CH4]": 1277,
1467
+ "[191Ir]": 1278,
1468
+ "[66Cu]": 1279,
1469
+ "[16O+]": 1280,
1470
+ "[25O]": 1281,
1471
+ "[10c]": 1282,
1472
+ "[Co-3]": 1283,
1473
+ "[Sn@@]": 1284,
1474
+ "[17OH-]": 1285,
1475
+ "[206Po]": 1286,
1476
+ "[204Po]": 1287,
1477
+ "[202Po]": 1288,
1478
+ "[201Po]": 1289,
1479
+ "[200Po]": 1290,
1480
+ "[199Po]": 1291,
1481
+ "[198Po]": 1292,
1482
+ "[197Po]": 1293,
1483
+ "[196Po]": 1294,
1484
+ "[195Po]": 1295,
1485
+ "[194Po]": 1296,
1486
+ "[193Po]": 1297,
1487
+ "[192Po]": 1298,
1488
+ "[191Po]": 1299,
1489
+ "[190Po]": 1300,
1490
+ "[217Po]": 1301,
1491
+ "[BiH4-]": 1302,
1492
+ "[TeH4]": 1303,
1493
+ "[222Ra]": 1304,
1494
+ "[62Ga]": 1305,
1495
+ "[39Ar]": 1306,
1496
+ "[144Sm]": 1307,
1497
+ "[58Fe]": 1308,
1498
+ "[153Eu]": 1309,
1499
+ "[85Rb]": 1310,
1500
+ "[171Yb]": 1311,
1501
+ "[172Yb]": 1312,
1502
+ "[114Cd]": 1313,
1503
+ "[51Fe]": 1314,
1504
+ "[142Ce]": 1315,
1505
+ "[207Tl]": 1316,
1506
+ "[92Mo]": 1317,
1507
+ "[115Sn]": 1318,
1508
+ "[140Ce]": 1319,
1509
+ "[202Hg]": 1320,
1510
+ "[180W]": 1321,
1511
+ "[182W]": 1322,
1512
+ "[183W]": 1323,
1513
+ "[184W]": 1324,
1514
+ "[96Mo]": 1325,
1515
+ "[47Ti]": 1326,
1516
+ "[111Cd]": 1327,
1517
+ "[143Nd]": 1328,
1518
+ "[145Nd]": 1329,
1519
+ "[126Te]": 1330,
1520
+ "[128Te]": 1331,
1521
+ "[130Te]": 1332,
1522
+ "[185Re]": 1333,
1523
+ "[97Mo]": 1334,
1524
+ "[98Mo]": 1335,
1525
+ "[183Re]": 1336,
1526
+ "[52V]": 1337,
1527
+ "[80Se]": 1338,
1528
+ "[87Kr]": 1339,
1529
+ "[137Xe]": 1340,
1530
+ "[196Au]": 1341,
1531
+ "[146Ce]": 1342,
1532
+ "[88Kr]": 1343,
1533
+ "[51Ti]": 1344,
1534
+ "[138Xe]": 1345,
1535
+ "[112Cd]": 1346,
1536
+ "[116Sn]": 1347,
1537
+ "[120Sn]": 1348,
1538
+ "[28SiH3]": 1349,
1539
+ "[35S-]": 1350,
1540
+ "[15NH-]": 1351,
1541
+ "[13CH3+]": 1352,
1542
+ "[34S+]": 1353,
1543
+ "[34s]": 1354,
1544
+ "[SiH4-]": 1355,
1545
+ "[100Tc+5]": 1356,
1546
+ "[NiH2+2]": 1357,
1547
+ "[239Th]": 1358,
1548
+ "[186Lu]": 1359,
1549
+ "[AuH3]": 1360,
1550
+ "[I@@-]": 1361,
1551
+ "[XeH2]": 1362,
1552
+ "[B+]": 1363,
1553
+ "[16CH2]": 1364,
1554
+ "[8C]": 1365,
1555
+ "[TaH5]": 1366,
1556
+ "[FeH4-]": 1367,
1557
+ "[19C@H]": 1368,
1558
+ "[10NH]": 1369,
1559
+ "[FeH6-3]": 1370,
1560
+ "[22CH]": 1371,
1561
+ "[25N]": 1372,
1562
+ "[25N+]": 1373,
1563
+ "[25N-]": 1374,
1564
+ "[21CH2]": 1375,
1565
+ "[18cH]": 1376,
1566
+ "[113I]": 1377,
1567
+ "[ScH3]": 1378,
1568
+ "[30PH3]": 1379,
1569
+ "[43Ca+2]": 1380,
1570
+ "[41Ca+2]": 1381,
1571
+ "[106Cd]": 1382,
1572
+ "[122Sn]": 1383,
1573
+ "[18CH3]": 1384,
1574
+ "[58Co+3]": 1385,
1575
+ "[98Tc+4]": 1386,
1576
+ "[70Ge]": 1387,
1577
+ "[76Ge]": 1388,
1578
+ "[108Cd]": 1389,
1579
+ "[116Cd]": 1390,
1580
+ "[130Xe]": 1391,
1581
+ "[94Mo]": 1392,
1582
+ "[124Sn]": 1393,
1583
+ "[186Os]": 1394,
1584
+ "[188Os]": 1395,
1585
+ "[190Os]": 1396,
1586
+ "[192Os]": 1397,
1587
+ "[106Pd]": 1398,
1588
+ "[110Pd]": 1399,
1589
+ "[120Te]": 1400,
1590
+ "[132Ba]": 1401,
1591
+ "[134Ba]": 1402,
1592
+ "[136Ba]": 1403,
1593
+ "[136Ce]": 1404,
1594
+ "[138Ce]": 1405,
1595
+ "[156Dy]": 1406,
1596
+ "[158Dy]": 1407,
1597
+ "[160Dy]": 1408,
1598
+ "[163Dy]": 1409,
1599
+ "[162Er]": 1410,
1600
+ "[164Er]": 1411,
1601
+ "[167Er]": 1412,
1602
+ "[176Hf]": 1413,
1603
+ "[26Mg]": 1414,
1604
+ "[144Nd]": 1415,
1605
+ "[150Nd]": 1416,
1606
+ "[41K]": 1417,
1607
+ "[46Ti]": 1418,
1608
+ "[48Ti]": 1419,
1609
+ "[49Ti]": 1420,
1610
+ "[50Ti]": 1421,
1611
+ "[170Yb]": 1422,
1612
+ "[173Yb]": 1423,
1613
+ "[91Zr]": 1424,
1614
+ "[92Zr]": 1425,
1615
+ "[96Zr]": 1426,
1616
+ "[34S-]": 1427,
1617
+ "[CuH2-]": 1428,
1618
+ "[38Cl]": 1429,
1619
+ "[25Mg]": 1430,
1620
+ "[51V]": 1431,
1621
+ "[93Nb]": 1432,
1622
+ "[95Mo]": 1433,
1623
+ "[45Sc]": 1434,
1624
+ "[123Sb]": 1435,
1625
+ "[139La]": 1436,
1626
+ "[9Be]": 1437,
1627
+ "[99Y+3]": 1438,
1628
+ "[99Y]": 1439,
1629
+ "[156Ho]": 1440,
1630
+ "[67Zn]": 1441,
1631
+ "[144Ce+4]": 1442,
1632
+ "[210Tl]": 1443,
1633
+ "[42Ca]": 1444,
1634
+ "[54Fe]": 1445,
1635
+ "[193Ir]": 1446,
1636
+ "[92Nb]": 1447,
1637
+ "[141Cs]": 1448,
1638
+ "[52Cr]": 1449,
1639
+ "[35ClH]": 1450,
1640
+ "[46Ca]": 1451,
1641
+ "[139Cs]": 1452,
1642
+ "[65Cu]": 1453,
1643
+ "[71Ga]": 1454,
1644
+ "[60Ni]": 1455,
1645
+ "[16NH3]": 1456,
1646
+ "[148Nd]": 1457,
1647
+ "[72Ge]": 1458,
1648
+ "[161Dy]": 1459,
1649
+ "[49Ca]": 1460,
1650
+ "[43Ca]": 1461,
1651
+ "[8Be]": 1462,
1652
+ "[48Ca]": 1463,
1653
+ "[44Ca]": 1464,
1654
+ "[120Xe]": 1465,
1655
+ "[80Rb]": 1466,
1656
+ "[215At]": 1467,
1657
+ "[180Re]": 1468,
1658
+ "[146Sm]": 1469,
1659
+ "[19Ne]": 1470,
1660
+ "[74Kr]": 1471,
1661
+ "[134La]": 1472,
1662
+ "[76Kr]": 1473,
1663
+ "[219Fr]": 1474,
1664
+ "[121Xe]": 1475,
1665
+ "[220Fr]": 1476,
1666
+ "[216At]": 1477,
1667
+ "[223Ac]": 1478,
1668
+ "[218At]": 1479,
1669
+ "[37Ar]": 1480,
1670
+ "[135I]": 1481,
1671
+ "[110Cd]": 1482,
1672
+ "[94Tc+7]": 1483,
1673
+ "[86Y+3]": 1484,
1674
+ "[135I-]": 1485,
1675
+ "[15O-2]": 1486,
1676
+ "[151Eu+3]": 1487,
1677
+ "[161Tb+3]": 1488,
1678
+ "[197Hg+2]": 1489,
1679
+ "[109Cd+2]": 1490,
1680
+ "[191Os+4]": 1491,
1681
+ "[170Tm+3]": 1492,
1682
+ "[205Bi+3]": 1493,
1683
+ "[233U+4]": 1494,
1684
+ "[126Sb+3]": 1495,
1685
+ "[127Sb+3]": 1496,
1686
+ "[132Cs+]": 1497,
1687
+ "[136Eu+3]": 1498,
1688
+ "[136Eu]": 1499,
1689
+ "[125Sn+4]": 1500,
1690
+ "[175Yb+3]": 1501,
1691
+ "[100Mo]": 1502,
1692
+ "[22Ne]": 1503,
1693
+ "[13c-]": 1504,
1694
+ "[13NH4+]": 1505,
1695
+ "[17C]": 1506,
1696
+ "[9C]": 1507,
1697
+ "[31S]": 1508,
1698
+ "[31SH]": 1509,
1699
+ "[133I]": 1510,
1700
+ "[126I]": 1511,
1701
+ "[36SH]": 1512,
1702
+ "[30S]": 1513,
1703
+ "[32SH]": 1514,
1704
+ "[19CH2]": 1515,
1705
+ "[19c]": 1516,
1706
+ "[18c]": 1517,
1707
+ "[15F]": 1518,
1708
+ "[10C]": 1519,
1709
+ "[RuH-]": 1520,
1710
+ "[62Zn+2]": 1521,
1711
+ "[32ClH]": 1522,
1712
+ "[33ClH]": 1523,
1713
+ "[78BrH]": 1524,
1714
+ "[12Li+]": 1525,
1715
+ "[12Li]": 1526,
1716
+ "[233Ra]": 1527,
1717
+ "[68Ge+4]": 1528,
1718
+ "[44Sc+3]": 1529,
1719
+ "[91Y+3]": 1530,
1720
+ "[106Ru+3]": 1531,
1721
+ "[PoH2]": 1532,
1722
+ "[AtH]": 1533,
1723
+ "[55Fe]": 1534,
1724
+ "[233U]": 1535,
1725
+ "[210PoH2]": 1536,
1726
+ "[230Th]": 1537,
1727
+ "[228Th]": 1538,
1728
+ "[222Rn]": 1539,
1729
+ "[35SH2]": 1540,
1730
+ "[227Th]": 1541,
1731
+ "[192Ir]": 1542,
1732
+ "[133Xe]": 1543,
1733
+ "[81Kr]": 1544,
1734
+ "[95Zr]": 1545,
1735
+ "[240Pu]": 1546,
1736
+ "[54Mn]": 1547,
1737
+ "[103Ru]": 1548,
1738
+ "[95Nb]": 1549,
1739
+ "[109Cd]": 1550,
1740
+ "[141Ce]": 1551,
1741
+ "[85Kr]": 1552,
1742
+ "[110Ag]": 1553,
1743
+ "[58Co]": 1554,
1744
+ "[241Pu]": 1555,
1745
+ "[234Th]": 1556,
1746
+ "[140La]": 1557,
1747
+ "[63Ni]": 1558,
1748
+ "[152Eu]": 1559,
1749
+ "[132IH]": 1560,
1750
+ "[226Rn]": 1561,
1751
+ "[154Eu]": 1562,
1752
+ "[36ClH]": 1563,
1753
+ "[228Ac]": 1564,
1754
+ "[155Eu]": 1565,
1755
+ "[106Rh]": 1566,
1756
+ "[243Am]": 1567,
1757
+ "[227Ac]": 1568,
1758
+ "[243Cm]": 1569,
1759
+ "[236U]": 1570,
1760
+ "[144Pr]": 1571,
1761
+ "[232U]": 1572,
1762
+ "[32SH2]": 1573,
1763
+ "[88Y]": 1574,
1764
+ "[82BrH]": 1575,
1765
+ "[135IH]": 1576,
1766
+ "[242Cm]": 1577,
1767
+ "[115Cd]": 1578,
1768
+ "[242Pu]": 1579,
1769
+ "[46Sc]": 1580,
1770
+ "[56Mn]": 1581,
1771
+ "[234Pa]": 1582,
1772
+ "[41Ar]": 1583,
1773
+ "[147Nd]": 1584,
1774
+ "[187W]": 1585,
1775
+ "[151Sm]": 1586,
1776
+ "[59Ni]": 1587,
1777
+ "[233Pa]": 1588,
1778
+ "[52Mn]": 1589,
1779
+ "[94Nb]": 1590,
1780
+ "[219Rn]": 1591,
1781
+ "[236Pu]": 1592,
1782
+ "[13NH3]": 1593,
1783
+ "[93Zr]": 1594,
1784
+ "[51Cr+6]": 1595,
1785
+ "[TlH3]": 1596,
1786
+ "[123Xe]": 1597,
1787
+ "[160Tb]": 1598,
1788
+ "[170Tm]": 1599,
1789
+ "[182Ta]": 1600,
1790
+ "[175Yb]": 1601,
1791
+ "[93Mo]": 1602,
1792
+ "[143Ce]": 1603,
1793
+ "[191Os]": 1604,
1794
+ "[126IH]": 1605,
1795
+ "[48V]": 1606,
1796
+ "[113Cd]": 1607,
1797
+ "[47Sc]": 1608,
1798
+ "[181Hf]": 1609,
1799
+ "[185W]": 1610,
1800
+ "[143Pr]": 1611,
1801
+ "[191Pt]": 1612,
1802
+ "[181W]": 1613,
1803
+ "[33PH3]": 1614,
1804
+ "[97Ru]": 1615,
1805
+ "[97Tc]": 1616,
1806
+ "[111Ag]": 1617,
1807
+ "[169Er]": 1618,
1808
+ "[107Pd]": 1619,
1809
+ "[103Ru+2]": 1620,
1810
+ "[34SH2]": 1621,
1811
+ "[137Ce]": 1622,
1812
+ "[242Am]": 1623,
1813
+ "[117SnH2]": 1624,
1814
+ "[57Ni]": 1625,
1815
+ "[239U]": 1626,
1816
+ "[60Cu]": 1627,
1817
+ "[250Cf]": 1628,
1818
+ "[193Au]": 1629,
1819
+ "[69Zn]": 1630,
1820
+ "[55Co]": 1631,
1821
+ "[139Ce]": 1632,
1822
+ "[127Xe]": 1633,
1823
+ "[159Gd]": 1634,
1824
+ "[56Co]": 1635,
1825
+ "[177Hf]": 1636,
1826
+ "[244Pu]": 1637,
1827
+ "[38ClH]": 1638,
1828
+ "[142Pr]": 1639,
1829
+ "[199Hg]": 1640,
1830
+ "[179Hf]": 1641,
1831
+ "[178Hf]": 1642,
1832
+ "[237U]": 1643,
1833
+ "[156Eu]": 1644,
1834
+ "[157Eu]": 1645,
1835
+ "[105Ru]": 1646,
1836
+ "[171Tm]": 1647,
1837
+ "[199Au]": 1648,
1838
+ "[155Sm]": 1649,
1839
+ "[80BrH]": 1650,
1840
+ "[108Ag]": 1651,
1841
+ "[128IH]": 1652,
1842
+ "[48Sc]": 1653,
1843
+ "[45Ti]": 1654,
1844
+ "[176Lu]": 1655,
1845
+ "[121SnH2]": 1656,
1846
+ "[148Pm]": 1657,
1847
+ "[57Fe]": 1658,
1848
+ "[10BH3]": 1659,
1849
+ "[96Tc]": 1660,
1850
+ "[133IH]": 1661,
1851
+ "[143Pm]": 1662,
1852
+ "[105Rh]": 1663,
1853
+ "[130IH]": 1664,
1854
+ "[134IH]": 1665,
1855
+ "[131IH]": 1666,
1856
+ "[71Zn]": 1667,
1857
+ "[105Ag]": 1668,
1858
+ "[97Zr]": 1669,
1859
+ "[235Pu]": 1670,
1860
+ "[231Th]": 1671,
1861
+ "[109Pd]": 1672,
1862
+ "[93Y]": 1673,
1863
+ "[190Ir]": 1674,
1864
+ "[135Xe]": 1675,
1865
+ "[53Mn]": 1676,
1866
+ "[134Ce]": 1677,
1867
+ "[234Np]": 1678,
1868
+ "[240Am]": 1679,
1869
+ "[246Cf]": 1680,
1870
+ "[240Cm]": 1681,
1871
+ "[241Cm]": 1682,
1872
+ "[226Th]": 1683,
1873
+ "[39ClH]": 1684,
1874
+ "[229Th]": 1685,
1875
+ "[245Cm]": 1686,
1876
+ "[240U]": 1687,
1877
+ "[240Np]": 1688,
1878
+ "[249Cm]": 1689,
1879
+ "[243Pu]": 1690,
1880
+ "[145Pm]": 1691,
1881
+ "[199Pt]": 1692,
1882
+ "[246Bk]": 1693,
1883
+ "[193Pt]": 1694,
1884
+ "[230U]": 1695,
1885
+ "[250Cm]": 1696,
1886
+ "[44Ti]": 1697,
1887
+ "[175Hf]": 1698,
1888
+ "[254Fm]": 1699,
1889
+ "[255Fm]": 1700,
1890
+ "[257Fm]": 1701,
1891
+ "[92Y]": 1702,
1892
+ "[188Ir]": 1703,
1893
+ "[171Lu]": 1704,
1894
+ "[257Md]": 1705,
1895
+ "[247Bk]": 1706,
1896
+ "[121IH]": 1707,
1897
+ "[250Bk]": 1708,
1898
+ "[179Lu]": 1709,
1899
+ "[224Ac]": 1710,
1900
+ "[195Hg]": 1711,
1901
+ "[244Am]": 1712,
1902
+ "[246Pu]": 1713,
1903
+ "[194Au]": 1714,
1904
+ "[252Fm]": 1715,
1905
+ "[173Hf]": 1716,
1906
+ "[246Cm]": 1717,
1907
+ "[135Ce]": 1718,
1908
+ "[49Cr]": 1719,
1909
+ "[248Cf]": 1720,
1910
+ "[247Cm]": 1721,
1911
+ "[248Cm]": 1722,
1912
+ "[174Ta]": 1723,
1913
+ "[176Ta]": 1724,
1914
+ "[154Tb]": 1725,
1915
+ "[172Ta]": 1726,
1916
+ "[177Ta]": 1727,
1917
+ "[175Ta]": 1728,
1918
+ "[180Ta]": 1729,
1919
+ "[158Tb]": 1730,
1920
+ "[115Ag]": 1731,
1921
+ "[189Os]": 1732,
1922
+ "[251Cf]": 1733,
1923
+ "[145Pr]": 1734,
1924
+ "[147Pr]": 1735,
1925
+ "[76BrH]": 1736,
1926
+ "[102Rh]": 1737,
1927
+ "[238Np]": 1738,
1928
+ "[185Os]": 1739,
1929
+ "[246Am]": 1740,
1930
+ "[233Np]": 1741,
1931
+ "[166Dy]": 1742,
1932
+ "[254Es]": 1743,
1933
+ "[244Cf]": 1744,
1934
+ "[193Os]": 1745,
1935
+ "[245Am]": 1746,
1936
+ "[245Bk]": 1747,
1937
+ "[239Am]": 1748,
1938
+ "[238Am]": 1749,
1939
+ "[97Nb]": 1750,
1940
+ "[245Pu]": 1751,
1941
+ "[254Cf]": 1752,
1942
+ "[188W]": 1753,
1943
+ "[250Es]": 1754,
1944
+ "[251Es]": 1755,
1945
+ "[237Am]": 1756,
1946
+ "[182Hf]": 1757,
1947
+ "[258Md]": 1758,
1948
+ "[232Np]": 1759,
1949
+ "[238Cm]": 1760,
1950
+ "[60Fe]": 1761,
1951
+ "[109Pd+2]": 1762,
1952
+ "[234Pu]": 1763,
1953
+ "[141Ce+3]": 1764,
1954
+ "[136Nd]": 1765,
1955
+ "[136Pr]": 1766,
1956
+ "[173Ta]": 1767,
1957
+ "[110Ru]": 1768,
1958
+ "[147Tb]": 1769,
1959
+ "[253Fm]": 1770,
1960
+ "[139Nd]": 1771,
1961
+ "[178Re]": 1772,
1962
+ "[177Re]": 1773,
1963
+ "[200Au]": 1774,
1964
+ "[182Re]": 1775,
1965
+ "[156Tb]": 1776,
1966
+ "[155Tb]": 1777,
1967
+ "[157Tb]": 1778,
1968
+ "[161Tb]": 1779,
1969
+ "[161Ho]": 1780,
1970
+ "[167Tm]": 1781,
1971
+ "[173Lu]": 1782,
1972
+ "[179Ta]": 1783,
1973
+ "[171Er]": 1784,
1974
+ "[44Sc]": 1785,
1975
+ "[49Sc]": 1786,
1976
+ "[49V]": 1787,
1977
+ "[51Mn]": 1788,
1978
+ "[90Nb]": 1789,
1979
+ "[88Nb]": 1790,
1980
+ "[88Zr]": 1791,
1981
+ "[36SH2]": 1792,
1982
+ "[174Yb]": 1793,
1983
+ "[178Lu]": 1794,
1984
+ "[179W]": 1795,
1985
+ "[83BrH]": 1796,
1986
+ "[107Cd]": 1797,
1987
+ "[75BrH]": 1798,
1988
+ "[62Co]": 1799,
1989
+ "[48Cr]": 1800,
1990
+ "[63Zn]": 1801,
1991
+ "[102Ag]": 1802,
1992
+ "[154Sm]": 1803,
1993
+ "[168Er]": 1804,
1994
+ "[65Ni]": 1805,
1995
+ "[137La]": 1806,
1996
+ "[187Ir]": 1807,
1997
+ "[144Pm]": 1808,
1998
+ "[146Pm]": 1809,
1999
+ "[160Gd]": 1810,
2000
+ "[166Yb]": 1811,
2001
+ "[162Dy]": 1812,
2002
+ "[47V]": 1813,
2003
+ "[141Nd]": 1814,
2004
+ "[141Sm]": 1815,
2005
+ "[166Er]": 1816,
2006
+ "[150Sm]": 1817,
2007
+ "[146Eu]": 1818,
2008
+ "[149Eu]": 1819,
2009
+ "[174Lu]": 1820,
2010
+ "[17NH3]": 1821,
2011
+ "[102Ru]": 1822,
2012
+ "[170Hf]": 1823,
2013
+ "[188Pt]": 1824,
2014
+ "[61Ni]": 1825,
2015
+ "[56Ni]": 1826,
2016
+ "[149Gd]": 1827,
2017
+ "[151Gd]": 1828,
2018
+ "[141Pm]": 1829,
2019
+ "[147Gd]": 1830,
2020
+ "[146Gd]": 1831,
2021
+ "[161Er]": 1832,
2022
+ "[103Ag]": 1833,
2023
+ "[145Eu]": 1834,
2024
+ "[153Tb]": 1835,
2025
+ "[155Dy]": 1836,
2026
+ "[184Re]": 1837,
2027
+ "[180Os]": 1838,
2028
+ "[182Os]": 1839,
2029
+ "[186Pt]": 1840,
2030
+ "[181Os]": 1841,
2031
+ "[181Re]": 1842,
2032
+ "[151Tb]": 1843,
2033
+ "[178Ta]": 1844,
2034
+ "[178W]": 1845,
2035
+ "[189Pt]": 1846,
2036
+ "[194Hg]": 1847,
2037
+ "[145Sm]": 1848,
2038
+ "[150Tb]": 1849,
2039
+ "[132La]": 1850,
2040
+ "[158Gd]": 1851,
2041
+ "[104Ag]": 1852,
2042
+ "[193Hg]": 1853,
2043
+ "[94Ru]": 1854,
2044
+ "[137Pr]": 1855,
2045
+ "[155Ho]": 1856,
2046
+ "[117Cd]": 1857,
2047
+ "[99Ru]": 1858,
2048
+ "[146Nd]": 1859,
2049
+ "[218Rn]": 1860,
2050
+ "[95Y]": 1861,
2051
+ "[79Kr]": 1862,
2052
+ "[120IH]": 1863,
2053
+ "[138Pr]": 1864,
2054
+ "[100Pd]": 1865,
2055
+ "[166Tm]": 1866,
2056
+ "[90Mo]": 1867,
2057
+ "[151Nd]": 1868,
2058
+ "[231U]": 1869,
2059
+ "[138Nd]": 1870,
2060
+ "[89Nb]": 1871,
2061
+ "[98Nb]": 1872,
2062
+ "[162Ho]": 1873,
2063
+ "[142Sm]": 1874,
2064
+ "[186Ta]": 1875,
2065
+ "[104Tc]": 1876,
2066
+ "[184Ta]": 1877,
2067
+ "[185Ta]": 1878,
2068
+ "[170Er]": 1879,
2069
+ "[107Rh]": 1880,
2070
+ "[131La]": 1881,
2071
+ "[169Lu]": 1882,
2072
+ "[74BrH]": 1883,
2073
+ "[150Pm]": 1884,
2074
+ "[172Tm]": 1885,
2075
+ "[197Pt]": 1886,
2076
+ "[230Pu]": 1887,
2077
+ "[170Lu]": 1888,
2078
+ "[86Zr]": 1889,
2079
+ "[176W]": 1890,
2080
+ "[177W]": 1891,
2081
+ "[101Pd]": 1892,
2082
+ "[105Pd]": 1893,
2083
+ "[108Pd]": 1894,
2084
+ "[149Nd]": 1895,
2085
+ "[164Ho]": 1896,
2086
+ "[159Ho]": 1897,
2087
+ "[167Ho]": 1898,
2088
+ "[176Yb]": 1899,
2089
+ "[156Sm]": 1900,
2090
+ "[77BrH]": 1901,
2091
+ "[189Re]": 1902,
2092
+ "[99Rh]": 1903,
2093
+ "[100Rh]": 1904,
2094
+ "[151Pm]": 1905,
2095
+ "[232Pa]": 1906,
2096
+ "[228Pa]": 1907,
2097
+ "[230Pa]": 1908,
2098
+ "[66Ni]": 1909,
2099
+ "[194Os]": 1910,
2100
+ "[135La]": 1911,
2101
+ "[138La]": 1912,
2102
+ "[141La]": 1913,
2103
+ "[142La]": 1914,
2104
+ "[195Ir]": 1915,
2105
+ "[96Nb]": 1916,
2106
+ "[157Ho]": 1917,
2107
+ "[183Hf]": 1918,
2108
+ "[162Tm]": 1919,
2109
+ "[172Er]": 1920,
2110
+ "[148Eu]": 1921,
2111
+ "[150Eu]": 1922,
2112
+ "[15CH4]": 1923,
2113
+ "[89Kr]": 1924,
2114
+ "[143La]": 1925,
2115
+ "[58Ni]": 1926,
2116
+ "[61Co]": 1927,
2117
+ "[158Eu]": 1928,
2118
+ "[165Er]": 1929,
2119
+ "[167Yb]": 1930,
2120
+ "[173Tm]": 1931,
2121
+ "[175Tm]": 1932,
2122
+ "[172Hf]": 1933,
2123
+ "[172Lu]": 1934,
2124
+ "[93Tc]": 1935,
2125
+ "[177Yb]": 1936,
2126
+ "[124IH]": 1937,
2127
+ "[194Ir]": 1938,
2128
+ "[147Eu]": 1939,
2129
+ "[101Mo]": 1940,
2130
+ "[180Hf]": 1941,
2131
+ "[189Ir]": 1942,
2132
+ "[87Y]": 1943,
2133
+ "[43Sc]": 1944,
2134
+ "[195Au]": 1945,
2135
+ "[112Ag]": 1946,
2136
+ "[84BrH]": 1947,
2137
+ "[106Ag]": 1948,
2138
+ "[109Ag]": 1949,
2139
+ "[101Rh]": 1950,
2140
+ "[162Yb]": 1951,
2141
+ "[228Rn]": 1952,
2142
+ "[139Pr]": 1953,
2143
+ "[94Y]": 1954,
2144
+ "[201Au]": 1955,
2145
+ "[40PH3]": 1956,
2146
+ "[110Ag+]": 1957,
2147
+ "[104Cd]": 1958,
2148
+ "[133Ba+2]": 1959,
2149
+ "[226Ac]": 1960,
2150
+ "[145Gd]": 1961,
2151
+ "[186Ir]": 1962,
2152
+ "[184Ir]": 1963,
2153
+ "[224Rn]": 1964,
2154
+ "[185Ir]": 1965,
2155
+ "[182Ir]": 1966,
2156
+ "[184Hf]": 1967,
2157
+ "[200Pt]": 1968,
2158
+ "[227Pa]": 1969,
2159
+ "[178Yb]": 1970,
2160
+ "[72Br-]": 1971,
2161
+ "[72BrH]": 1972,
2162
+ "[248Am]": 1973,
2163
+ "[238Th]": 1974,
2164
+ "[161Gd]": 1975,
2165
+ "[35S-2]": 1976,
2166
+ "[107Ag]": 1977,
2167
+ "[FeH6-4]": 1978,
2168
+ "[89Sr]": 1979,
2169
+ "[SnH3-]": 1980,
2170
+ "[SeH3]": 1981,
2171
+ "[TeH3+]": 1982,
2172
+ "[SbH4+]": 1983,
2173
+ "[AsH4+]": 1984,
2174
+ "[4He]": 1985,
2175
+ "[AsH3-]": 1986,
2176
+ "[1HH]": 1987,
2177
+ "[3H+]": 1988,
2178
+ "[82Rb]": 1989,
2179
+ "[85Sr]": 1990,
2180
+ "[90Sr]": 1991,
2181
+ "[137Cs]": 1992,
2182
+ "[133Ba]": 1993,
2183
+ "[131Cs]": 1994,
2184
+ "[SbH5]": 1995,
2185
+ "[224Ra]": 1996,
2186
+ "[22Na]": 1997,
2187
+ "[210Bi]": 1998,
2188
+ "[214Bi]": 1999,
2189
+ "[228Ra]": 2000,
2190
+ "[127Sb]": 2001,
2191
+ "[136Cs]": 2002,
2192
+ "[125Sb]": 2003,
2193
+ "[134Cs]": 2004,
2194
+ "[140Ba]": 2005,
2195
+ "[45Ca]": 2006,
2196
+ "[206Pb]": 2007,
2197
+ "[207Pb]": 2008,
2198
+ "[24Na]": 2009,
2199
+ "[86Rb]": 2010,
2200
+ "[212Bi]": 2011,
2201
+ "[208Pb]": 2012,
2202
+ "[124Sb]": 2013,
2203
+ "[204Pb]": 2014,
2204
+ "[44K]": 2015,
2205
+ "[129Te]": 2016,
2206
+ "[113Sn]": 2017,
2207
+ "[204Tl]": 2018,
2208
+ "[87Sr]": 2019,
2209
+ "[208Tl]": 2020,
2210
+ "[87Rb]": 2021,
2211
+ "[47Ca]": 2022,
2212
+ "[135Cs]": 2023,
2213
+ "[216Po]": 2024,
2214
+ "[137Ba]": 2025,
2215
+ "[207Bi]": 2026,
2216
+ "[212Po]": 2027,
2217
+ "[79Se]": 2028,
2218
+ "[223Ra]": 2029,
2219
+ "[86Sr]": 2030,
2220
+ "[122Sb]": 2031,
2221
+ "[26Al]": 2032,
2222
+ "[32Si]": 2033,
2223
+ "[126Sn]": 2034,
2224
+ "[225Ra]": 2035,
2225
+ "[114In]": 2036,
2226
+ "[72Ga]": 2037,
2227
+ "[132Te]": 2038,
2228
+ "[10Be]": 2039,
2229
+ "[125Sn]": 2040,
2230
+ "[73As]": 2041,
2231
+ "[206Bi]": 2042,
2232
+ "[117Sn]": 2043,
2233
+ "[40Ca]": 2044,
2234
+ "[41Ca]": 2045,
2235
+ "[89Rb]": 2046,
2236
+ "[116In]": 2047,
2237
+ "[129Sb]": 2048,
2238
+ "[91Sr]": 2049,
2239
+ "[71Ge]": 2050,
2240
+ "[139Ba]": 2051,
2241
+ "[69Ga]": 2052,
2242
+ "[120Sb]": 2053,
2243
+ "[121Sn]": 2054,
2244
+ "[123Sn]": 2055,
2245
+ "[131Te]": 2056,
2246
+ "[77Ge]": 2057,
2247
+ "[135Ba]": 2058,
2248
+ "[82Sr]": 2059,
2249
+ "[43K]": 2060,
2250
+ "[131Ba]": 2061,
2251
+ "[92Sr]": 2062,
2252
+ "[88Rb]": 2063,
2253
+ "[129Cs]": 2064,
2254
+ "[144Cs]": 2065,
2255
+ "[127Cs]": 2066,
2256
+ "[200Tl]": 2067,
2257
+ "[202Tl]": 2068,
2258
+ "[141Ba]": 2069,
2259
+ "[117Sb]": 2070,
2260
+ "[116Sb]": 2071,
2261
+ "[78As]": 2072,
2262
+ "[131Sb]": 2073,
2263
+ "[126Sb]": 2074,
2264
+ "[128Sb]": 2075,
2265
+ "[130Sb]": 2076,
2266
+ "[67Ge]": 2077,
2267
+ "[68Ge]": 2078,
2268
+ "[78Ge]": 2079,
2269
+ "[66Ge]": 2080,
2270
+ "[223Fr]": 2081,
2271
+ "[132Cs]": 2082,
2272
+ "[125Cs]": 2083,
2273
+ "[138Cs]": 2084,
2274
+ "[133Te]": 2085,
2275
+ "[84Rb]": 2086,
2276
+ "[83Rb]": 2087,
2277
+ "[81Rb]": 2088,
2278
+ "[142Ba]": 2089,
2279
+ "[200Bi]": 2090,
2280
+ "[115Sb]": 2091,
2281
+ "[194Tl]": 2092,
2282
+ "[70Se]": 2093,
2283
+ "[112In]": 2094,
2284
+ "[118Sb]": 2095,
2285
+ "[70Ga]": 2096,
2286
+ "[27Mg]": 2097,
2287
+ "[202Bi]": 2098,
2288
+ "[83Se]": 2099,
2289
+ "[9Li]": 2100,
2290
+ "[69As]": 2101,
2291
+ "[79Rb]": 2102,
2292
+ "[81Sr]": 2103,
2293
+ "[83Sr]": 2104,
2294
+ "[78Se]": 2105,
2295
+ "[109In]": 2106,
2296
+ "[29Al]": 2107,
2297
+ "[118Sn]": 2108,
2298
+ "[117In]": 2109,
2299
+ "[119Sb]": 2110,
2300
+ "[114Sn]": 2111,
2301
+ "[138Ba]": 2112,
2302
+ "[69Ge]": 2113,
2303
+ "[73Ga]": 2114,
2304
+ "[74Ge]": 2115,
2305
+ "[206Tl]": 2116,
2306
+ "[199Tl]": 2117,
2307
+ "[130Cs]": 2118,
2308
+ "[28Mg]": 2119,
2309
+ "[116Te]": 2120,
2310
+ "[112Sn]": 2121,
2311
+ "[126Ba]": 2122,
2312
+ "[211Bi]": 2123,
2313
+ "[81Se]": 2124,
2314
+ "[127Sn]": 2125,
2315
+ "[143Cs]": 2126,
2316
+ "[134Te]": 2127,
2317
+ "[80Sr]": 2128,
2318
+ "[45K]": 2129,
2319
+ "[215Po]": 2130,
2320
+ "[207Po]": 2131,
2321
+ "[111Sn]": 2132,
2322
+ "[211Po]": 2133,
2323
+ "[128Ba]": 2134,
2324
+ "[198Tl]": 2135,
2325
+ "[227Ra]": 2136,
2326
+ "[213Po]": 2137,
2327
+ "[220Ra]": 2138,
2328
+ "[128Sn]": 2139,
2329
+ "[203Po]": 2140,
2330
+ "[205Po]": 2141,
2331
+ "[65Ga]": 2142,
2332
+ "[197Tl]": 2143,
2333
+ "[88Sr]": 2144,
2334
+ "[110In]": 2145,
2335
+ "[31Si]": 2146,
2336
+ "[201Bi]": 2147,
2337
+ "[121Te]": 2148,
2338
+ "[205Bi]": 2149,
2339
+ "[203Bi]": 2150,
2340
+ "[195Tl]": 2151,
2341
+ "[209Tl]": 2152,
2342
+ "[110Sn]": 2153,
2343
+ "[222Fr]": 2154,
2344
+ "[207At]": 2155,
2345
+ "[119In]": 2156,
2346
+ "[As@]": 2157,
2347
+ "[129IH]": 2158,
2348
+ "[157Dy]": 2159,
2349
+ "[111IH]": 2160,
2350
+ "[230Ra]": 2161,
2351
+ "[144Pr+3]": 2162,
2352
+ "[SiH3+]": 2163,
2353
+ "[3He]": 2164,
2354
+ "[AsH5]": 2165,
2355
+ "[72Se]": 2166,
2356
+ "[95Tc]": 2167,
2357
+ "[103Pd]": 2168,
2358
+ "[121Sn+2]": 2169,
2359
+ "[211Rn]": 2170,
2360
+ "[38SH2]": 2171,
2361
+ "[127IH]": 2172,
2362
+ "[74Br-]": 2173,
2363
+ "[133I-]": 2174,
2364
+ "[100Tc+4]": 2175,
2365
+ "[100Tc]": 2176,
2366
+ "[36Cl-]": 2177,
2367
+ "[89Y+3]": 2178,
2368
+ "[104Rh]": 2179,
2369
+ "[152Sm]": 2180,
2370
+ "[226Ra]": 2181,
2371
+ "[19FH]": 2182,
2372
+ "[104Pd]": 2183,
2373
+ "[148Gd]": 2184,
2374
+ "[157Lu]": 2185,
2375
+ "[33SH2]": 2186,
2376
+ "[121I-]": 2187,
2377
+ "[17FH]": 2188,
2378
+ "[71Se]": 2189,
2379
+ "[157Sm]": 2190,
2380
+ "[148Tb]": 2191,
2381
+ "[164Dy]": 2192,
2382
+ "[15OH2]": 2193,
2383
+ "[15O+]": 2194,
2384
+ "[39K]": 2195,
2385
+ "[40Ar]": 2196,
2386
+ "[50Cr+3]": 2197,
2387
+ "[50Cr]": 2198,
2388
+ "[52Ti]": 2199,
2389
+ "[103Pd+2]": 2200,
2390
+ "[130Ba]": 2201,
2391
+ "[142Pm]": 2202,
2392
+ "[153Gd+3]": 2203,
2393
+ "[151Eu]": 2204,
2394
+ "[103Rh]": 2205,
2395
+ "[124Xe]": 2206,
2396
+ "[152Tb]": 2207,
2397
+ "[17OH2]": 2208,
2398
+ "[20Ne]": 2209,
2399
+ "[52Fe]": 2210,
2400
+ "[94Zr+4]": 2211,
2401
+ "[94Zr]": 2212,
2402
+ "[149Pr]": 2213,
2403
+ "[16OH2]": 2214,
2404
+ "[53Cr+6]": 2215,
2405
+ "[53Cr]": 2216,
2406
+ "[81Br-]": 2217,
2407
+ "[112Pd]": 2218,
2408
+ "[125Xe]": 2219,
2409
+ "[155Gd]": 2220,
2410
+ "[157Gd]": 2221,
2411
+ "[168Yb]": 2222,
2412
+ "[184Os]": 2223,
2413
+ "[166Tb]": 2224,
2414
+ "[221Fr]": 2225,
2415
+ "[212Ra]": 2226,
2416
+ "[75Br-]": 2227,
2417
+ "[79Br-]": 2228,
2418
+ "[113Ag]": 2229,
2419
+ "[23Na]": 2230,
2420
+ "[34Cl-]": 2231,
2421
+ "[34ClH]": 2232,
2422
+ "[38Cl-]": 2233,
2423
+ "[56Fe]": 2234,
2424
+ "[68Cu]": 2235,
2425
+ "[77Br-]": 2236,
2426
+ "[90Zr+4]": 2237,
2427
+ "[90Zr]": 2238,
2428
+ "[102Pd]": 2239,
2429
+ "[154Eu+3]": 2240,
2430
+ "[57Mn]": 2241,
2431
+ "[165Tm]": 2242,
2432
+ "[152Dy]": 2243,
2433
+ "[217At]": 2244,
2434
+ "[77se]": 2245,
2435
+ "[13cH-]": 2246,
2436
+ "[122Te]": 2247,
2437
+ "[156Gd]": 2248,
2438
+ "[124Te]": 2249,
2439
+ "[53Ni]": 2250,
2440
+ "[131Xe]": 2251,
2441
+ "[174Hf+4]": 2252,
2442
+ "[174Hf]": 2253,
2443
+ "[76Se]": 2254,
2444
+ "[168Tm]": 2255,
2445
+ "[167Dy]": 2256,
2446
+ "[154Gd]": 2257,
2447
+ "[95Ru]": 2258,
2448
+ "[210At]": 2259,
2449
+ "[85Br]": 2260,
2450
+ "[59Co]": 2261,
2451
+ "[122Xe]": 2262,
2452
+ "[27Al]": 2263,
2453
+ "[54Cr]": 2264,
2454
+ "[198Hg]": 2265,
2455
+ "[85Rb+]": 2266,
2456
+ "[214Tl]": 2267,
2457
+ "[229Rn]": 2268,
2458
+ "[218Pb]": 2269,
2459
+ "[218Bi]": 2270,
2460
+ "[167Tm+3]": 2271,
2461
+ "[18o+]": 2272,
2462
+ "[P@@H+]": 2273,
2463
+ "[P@H+]": 2274,
2464
+ "[13N+]": 2275,
2465
+ "[212Pb+2]": 2276,
2466
+ "[217Bi]": 2277,
2467
+ "[249Cf+2]": 2278,
2468
+ "[18OH3+]": 2279,
2469
+ "[90Sr-]": 2280,
2470
+ "[Cf+3]": 2281,
2471
+ "[200Hg]": 2282,
2472
+ "[86Tc]": 2283,
2473
+ "[141Pr+3]": 2284,
2474
+ "[141Pr]": 2285,
2475
+ "[16nH]": 2286,
2476
+ "[14NH4+]": 2287,
2477
+ "[132Xe]": 2288,
2478
+ "[83Kr]": 2289,
2479
+ "[70Zn+2]": 2290,
2480
+ "[137Ba+2]": 2291,
2481
+ "[36Ar]": 2292,
2482
+ "[38Ar]": 2293,
2483
+ "[21Ne]": 2294,
2484
+ "[126Xe]": 2295,
2485
+ "[136Xe]": 2296,
2486
+ "[128Xe]": 2297,
2487
+ "[134Xe]": 2298,
2488
+ "[84Kr]": 2299,
2489
+ "[86Kr]": 2300,
2490
+ "[78Kr]": 2301,
2491
+ "[80Kr]": 2302,
2492
+ "[82Kr]": 2303,
2493
+ "[67Zn+2]": 2304,
2494
+ "[65Cu+2]": 2305,
2495
+ "[110Te]": 2306,
2496
+ "[58Fe+3]": 2307,
2497
+ "[142Nd]": 2308,
2498
+ "[38K]": 2309,
2499
+ "[198Au+3]": 2310,
2500
+ "[122IH]": 2311,
2501
+ "[38PH3]": 2312,
2502
+ "[130I-]": 2313,
2503
+ "[40K+]": 2314,
2504
+ "[38K+]": 2315,
2505
+ "[28Mg+2]": 2316,
2506
+ "[208Tl+]": 2317,
2507
+ "[13OH2]": 2318,
2508
+ "[198Bi]": 2319,
2509
+ "[192Bi]": 2320,
2510
+ "[194Bi]": 2321,
2511
+ "[196Bi]": 2322,
2512
+ "[132I-]": 2323,
2513
+ "[83Sr+2]": 2324,
2514
+ "[169Er+3]": 2325,
2515
+ "[122I-]": 2326,
2516
+ "[120I-]": 2327,
2517
+ "[92Sr+2]": 2328,
2518
+ "[126I-]": 2329,
2519
+ "[24Mg]": 2330,
2520
+ "[84Sr]": 2331,
2521
+ "[118Pd+2]": 2332,
2522
+ "[118Pd]": 2333,
2523
+ "[AsH4]": 2334,
2524
+ "[127I-]": 2335,
2525
+ "[9C-]": 2336,
2526
+ "[11CH3+]": 2337,
2527
+ "[17B]": 2338,
2528
+ "[7B]": 2339,
2529
+ "[4HH]": 2340,
2530
+ "[18C-]": 2341,
2531
+ "[22CH3-]": 2342,
2532
+ "[22CH4]": 2343,
2533
+ "[17C-]": 2344,
2534
+ "[15CH3]": 2345,
2535
+ "[16CH3]": 2346,
2536
+ "[11NH3]": 2347,
2537
+ "[21NH3]": 2348,
2538
+ "[11N-]": 2349,
2539
+ "[11NH]": 2350,
2540
+ "[16CH]": 2351,
2541
+ "[17CH2]": 2352,
2542
+ "[99Ru+2]": 2353,
2543
+ "[181Ta+2]": 2354,
2544
+ "[181Ta]": 2355,
2545
+ "[20CH]": 2356,
2546
+ "[32PH2]": 2357,
2547
+ "[55Fe+2]": 2358,
2548
+ "[SH3]": 2359,
2549
+ "[S@H]": 2360,
2550
+ "[UNK]": 2361
2551
+ },
2552
+ "merges": []
2553
+ }
2554
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[SEP]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[PAD]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[MASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "2361": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "extra_special_tokens": {},
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 256,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "tokenizer_class": "PreTrainedTokenizerFast",
52
+ "unk_token": "[UNK]"
53
+ }