|
--- |
|
library_name: transformers |
|
base_model: raulgdp/xml-roberta-large-finetuned-ner |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- biobert_json |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: NER-finetuning-XML-RoBERTa-BIOBERT |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: biobert_json |
|
type: biobert_json |
|
config: Biobert_json |
|
split: validation |
|
args: Biobert_json |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.937247539398077 |
|
- name: Recall |
|
type: recall |
|
value: 0.964689348246179 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9507704738269752 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9773235561218265 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NER-finetuning-XML-RoBERTa-BIOBERT |
|
|
|
This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1065 |
|
- Precision: 0.9372 |
|
- Recall: 0.9647 |
|
- F1: 0.9508 |
|
- Accuracy: 0.9773 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1305 | 1.0 | 2447 | 0.1005 | 0.9298 | 0.9680 | 0.9485 | 0.9747 | |
|
| 0.0874 | 2.0 | 4894 | 0.0981 | 0.9406 | 0.9711 | 0.9556 | 0.9781 | |
|
| 0.0782 | 3.0 | 7341 | 0.1023 | 0.9245 | 0.9577 | 0.9408 | 0.9747 | |
|
| 0.0807 | 4.0 | 9788 | 0.1042 | 0.9316 | 0.9567 | 0.9440 | 0.9753 | |
|
| 0.0437 | 5.0 | 12235 | 0.1065 | 0.9372 | 0.9647 | 0.9508 | 0.9773 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|