Criser2013 commited on
Commit
015ab8d
·
verified ·
1 Parent(s): a15e0ac

End of training

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: raulgdp/xml-roberta-large-finetuned-ner
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - biobert_json
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: NER-finetuning-XML-RoBERTa-BIOBERT
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: biobert_json
21
+ type: biobert_json
22
+ config: Biobert_json
23
+ split: validation
24
+ args: Biobert_json
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.937247539398077
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.964689348246179
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9507704738269752
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9773235561218265
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # NER-finetuning-XML-RoBERTa-BIOBERT
44
+
45
+ This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1065
48
+ - Precision: 0.9372
49
+ - Recall: 0.9647
50
+ - F1: 0.9508
51
+ - Accuracy: 0.9773
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 4
72
+ - eval_batch_size: 4
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 5
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1305 | 1.0 | 2447 | 0.1005 | 0.9298 | 0.9680 | 0.9485 | 0.9747 |
83
+ | 0.0874 | 2.0 | 4894 | 0.0981 | 0.9406 | 0.9711 | 0.9556 | 0.9781 |
84
+ | 0.0782 | 3.0 | 7341 | 0.1023 | 0.9245 | 0.9577 | 0.9408 | 0.9747 |
85
+ | 0.0807 | 4.0 | 9788 | 0.1042 | 0.9316 | 0.9567 | 0.9440 | 0.9753 |
86
+ | 0.0437 | 5.0 | 12235 | 0.1065 | 0.9372 | 0.9647 | 0.9508 | 0.9773 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.44.2
92
+ - Pytorch 2.5.0+cu121
93
+ - Datasets 3.1.0
94
+ - Tokenizers 0.19.1