|
--- |
|
license: mit |
|
--- |
|
|
|
<div align="center"> |
|
<h1>Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction[<a href="https://arxiv.org/abs/2407.01964">Paper</a>]</h1> |
|
</div> |
|
|
|
## Released Resources |
|
- 🤗The Huggingface model: Based on Qwen2-7B, we trained a model using the CAIL2018 dataset. [Qwen2-7B-CAIL2018-step-8765](https://huggingface.co/ChenlongDeng/ADAPT-Qwen2-7B-CAIL2018-step-8765) |
|
- The training trajectories: We release the 80,141 training trajectories of the CAIL2018 dataset in [this link](https://pan.baidu.com/s/1HkLTedi1r6WB0CBvH5dtrA?pwd=p9ex) |
|
|
|
## Supported Prompts |
|
❗️Note: Our released model needs the `Qwen chat_template` to conduct correct generation. |
|
|
|
We support the following four prompts to enable reasoning. You should use `the same input format and prompt` to achieve the best performance. |
|
|
|
### Prompt 1: ADAPT Reasoning |
|
```python |
|
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}" |
|
prompt = "请你采用ADAPT框架分析以上案件中该被告人可能被判处的罪名、适用法条和刑期" |
|
model_input_str = '\n'.join(case_input, prompt) |
|
``` |
|
|
|
|
|
### Prompt 2: Ask |
|
```python |
|
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}" |
|
prompt = "请你用法律理论分析以上案件中该被告人在行为主体,起因、行为和结果,行为对象,犯罪主观四个方面的信息" |
|
model_input_str = '\n'.join(case_input, prompt) |
|
``` |
|
|
|
### Prompt 3: Article |
|
```python |
|
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}" |
|
prompt = "请你依次列出以上案件中被告人适用的法条具体内容,以及适用该法条的原因" |
|
model_input_str = '\n'.join(case_input, prompt) |
|
``` |
|
|
|
### Prompt 4: Sentencing factors |
|
```python |
|
case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}\n罪名:{crimes}" # e.g., 污染环境罪 |
|
prompt = "请你分析以上案件中的量刑区间和量刑因素,并给出最后的量刑预测结果" |
|
model_input_str = '\n'.join(case_input, prompt) |
|
``` |
|
|
|
|
|
|
|
## Citation |
|
``` |
|
@misc{deng2024enablingdiscriminativereasoningllms, |
|
title={Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction}, |
|
author={Chenlong Deng and Kelong Mao and Yuyao Zhang and Zhicheng Dou}, |
|
year={2024}, |
|
eprint={2407.01964}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2407.01964}, |
|
} |
|
``` |