Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction[Paper]

Released Resources

  • 🤗The Huggingface model: Based on Qwen2-7B, we trained a model using the CAIL2018 dataset. Qwen2-7B-CAIL2018-step-8765
  • The training trajectories: We release the 80,141 training trajectories of the CAIL2018 dataset in this link

Supported Prompts

❗️Note: Our released model needs the Qwen chat_template to conduct correct generation.

We support the following four prompts to enable reasoning. You should use the same input format and prompt to achieve the best performance.

Prompt 1: ADAPT Reasoning

case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
prompt = "请你采用ADAPT框架分析以上案件中该被告人可能被判处的罪名、适用法条和刑期"
model_input_str = '\n'.join(case_input, prompt)

Prompt 2: Ask

case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
prompt = "请你用法律理论分析以上案件中该被告人在行为主体,起因、行为和结果,行为对象,犯罪主观四个方面的信息"
model_input_str = '\n'.join(case_input, prompt)

Prompt 3: Article

case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}"
prompt = "请你依次列出以上案件中被告人适用的法条具体内容,以及适用该法条的原因"
model_input_str = '\n'.join(case_input, prompt)

Prompt 4: Sentencing factors

case_input = f"案件描述:{description}\n被告人姓名:{defendant_name}\n罪名:{crimes}" # e.g., 污染环境罪
prompt = "请你分析以上案件中的量刑区间和量刑因素,并给出最后的量刑预测结果"
model_input_str = '\n'.join(case_input, prompt)

Citation

@misc{deng2024enablingdiscriminativereasoningllms,
      title={Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction}, 
      author={Chenlong Deng and Kelong Mao and Yuyao Zhang and Zhicheng Dou},
      year={2024},
      eprint={2407.01964},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.01964}, 
}
Downloads last month
30
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.