|
--- |
|
license: apache-2.0 |
|
pipeline_tag: image-text-to-text |
|
library_name: transformers |
|
tags: |
|
- SAIL |
|
--- |
|
|
|
# SAIL |
|
|
|
[\[๐ GitHub\]](https://github.com/bytedance/SAIL) |
|
[\[๐ paper\]](https://arxiv.org/abs/2504.10462) |
|
[\[๐ Quick Start\]](#quick-start) |
|
|
|
|
|
|
|
## Introduction |
|
|
|
SAIL is a **S**ingle tr**A**nsformer model for v**I**sion and **L**anguage. It is a unified multimodal large language model (MLLM) that seamlessly integrates raw pixel encoding and language decoding within a single architecture. **โWithout relying on pre-trained vision encoders**, SAIL achieves competitive performance across a wide range of vision-language tasks and demonstrates strong visual representation, rivaling state-of-the-art vision models in tasks like semantic segmentation. |
|
|
|
## Model |
|
|
|
| Model Name | HF Link | |
|
|:----------:|:------------------------------------------------------------------:| |
|
| SAIL-7B | [๐ค link](https://huggingface.co/ByteDance-Seed/SAIL-7B) | |
|
|
|
|
|
|
|
## Quick Start |
|
|
|
We provide an example code to run `SAIL`. |
|
|
|
```python |
|
from example import * |
|
|
|
NON_VISION_TOKEN_ID = -1 |
|
PATH_TO_MODEL = "path to model" |
|
PATH_TO_TOKENIZER = "path to tokenizer" |
|
IMAGE_PATH = "path to image" |
|
PROMPT = "content of prompt" |
|
|
|
model, tokenizer = get_transformer_and_tokenizer( |
|
PATH_TO_MODEL, |
|
PATH_TO_TOKENIZER |
|
) |
|
model = model.cuda() |
|
|
|
image_processor = lambda x: convert_image_base64_to_patches(load_image_to_base64(x), model.config.vision_patch_size, fix_res_size=None) |
|
prompt_inp = tokenizer.bos_token + '[INST] {} [/INST]'.format(PROMPT) |
|
image_path = IMAGE_PATH |
|
image_patches = image_processor(image_path) |
|
nh, nw = image_patches.shape[:2] |
|
image_tokens, image_tokens_len = prepare_image_textual_seq_norowsep(nh, nw, tokenizer, add_cls=False) |
|
|
|
input_tokens = image_tokens + prompt_inp |
|
input_ids = tokenizer(input_tokens, add_special_tokens=False, return_tensors="pt").input_ids |
|
vision_patch_indices = torch.full_like(input_ids, fill_value=NON_VISION_TOKEN_ID) |
|
vision_patches = image_patches.view(nh * nw, -1) |
|
assert (input_ids == tokenizer.vis_patch_tok_id).sum() == vision_patches.size(0) |
|
assert (input_ids >= tokenizer.vis_beg_tok_id).sum() == image_tokens_len |
|
|
|
vision_patch_indices[input_ids==tokenizer.vis_patch_tok_id] = torch.arange(vision_patches.size(0)) |
|
attention_mask = create_single_prefix_mask(image_tokens_len, input_ids.size(-1)).unsqueeze(0).unsqueeze(0) |
|
position_ids = generate_mm_pos_ids_singleit(input_ids.squeeze(0).numpy().tolist(), tokenizer.vis_patch_tok_id, nh, nw).unsqueeze(1) |
|
|
|
input_ids = input_ids.long().cuda() |
|
vision_patch_indices = vision_patch_indices.long().cuda() |
|
vision_patches = vision_patches.to(torch.bfloat16).cuda() |
|
position_ids = position_ids.long().cuda() |
|
attention_mask = attention_mask.cuda() |
|
|
|
padding_attention_mask = torch.ones_like(input_ids).cuda() |
|
|
|
inputs = dict( |
|
input_ids = input_ids, |
|
position_ids = position_ids, |
|
attention_mask = padding_attention_mask, |
|
vision_patches = vision_patches, |
|
vision_patch_indices = vision_patch_indices, |
|
use_cache=True |
|
) |
|
|
|
cached_inputs = dict( |
|
input_ids = input_ids[:, :image_tokens_len], |
|
position_ids = position_ids[:, :, :image_tokens_len], |
|
attention_mask = attention_mask[:,:, :image_tokens_len, :image_tokens_len], |
|
vision_patches = vision_patches, |
|
vision_patch_indices = vision_patch_indices[:, :image_tokens_len], |
|
use_cache=True |
|
) |
|
|
|
prefix_cache = DynamicCache() |
|
with torch.no_grad(): |
|
prefix_cache = model.forward(**cached_inputs, past_key_values=prefix_cache).past_key_values |
|
|
|
past_key_values = copy.deepcopy(prefix_cache) |
|
generate_config = GenerationConfig( |
|
max_new_tokens=1024, |
|
return_dict_in_generate=True, |
|
output_attentions=False |
|
) |
|
generated = model.generate( |
|
**inputs, |
|
past_key_values=past_key_values, |
|
generation_config=generate_config |
|
) |
|
generated_ids = generated['sequences'][:, input_ids.size(1):] |
|
response = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
print(f"\nModel Response: ===\n{response}\n===") |
|
``` |
|
|
|
## Citation |
|
|
|
If you find this project useful in your research, please consider citing: |
|
|
|
```BibTeX |
|
@article{lei2025sail, |
|
title={The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer}, |
|
author={Lei, Weixian and Wang, Jiacong and Wang, Haochen and Li, Xiangtai and Liew, Jun Hao and Feng, Jiashi and Huang, Zilong}, |
|
journal={arXiv preprint arXiv:2504.10462}, |
|
year={2025} |
|
} |
|
``` |