Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,126 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- SAIL
|
7 |
+
---
|
8 |
+
|
9 |
+
# SAIL
|
10 |
+
|
11 |
+
[\[📂 GitHub\]](https://github.com/bytedance/SAIL)
|
12 |
+
[\[📜 paper\]](https://arxiv.org/abs/2504.10462)
|
13 |
+
[\[🚀 Quick Start\]](#quick-start)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
SAIL is a **S**ingle tr**A**nsformer model for v**I**sion and **L**anguage. It is a unified multimodal large language model (MLLM) that seamlessly integrates raw pixel encoding and language decoding within a single architecture. **Without relying on pre-trained vision encoders**, SAIL achieves competitive performance across a wide range of vision-language tasks and demonstrates strong visual representation, rivaling state-of-the-art vision models in tasks like semantic segmentation.
|
20 |
+
|
21 |
+
## Model
|
22 |
+
|
23 |
+
| Model Name | HF Link |
|
24 |
+
|:----------:|:------------------------------------------------------------------:|
|
25 |
+
| SAIL-7B | [🤗 link](https://huggingface.co/ByteDance-Seed/SAIL-7B) |
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
## Quick Start
|
30 |
+
|
31 |
+
We provide an example code to run `SAIL`.
|
32 |
+
|
33 |
+
```python
|
34 |
+
from example import *
|
35 |
+
|
36 |
+
NON_VISION_TOKEN_ID = -1
|
37 |
+
PATH_TO_MODEL = "path to model"
|
38 |
+
PATH_TO_TOKENIZER = "path to tokenizer"
|
39 |
+
IMAGE_PATH = "path to image"
|
40 |
+
PROMPT = "content of prompt"
|
41 |
+
|
42 |
+
model, tokenizer = get_transformer_and_tokenizer(
|
43 |
+
PATH_TO_MODEL,
|
44 |
+
PATH_TO_TOKENIZER
|
45 |
+
)
|
46 |
+
model = model.cuda()
|
47 |
+
|
48 |
+
image_processor = lambda x: convert_image_base64_to_patches(load_image_to_base64(x), model.config.vision_patch_size, fix_res_size=None)
|
49 |
+
prompt_inp = tokenizer.bos_token + '[INST] {} [/INST]'.format(PROMPT)
|
50 |
+
image_path = IMAGE_PATH
|
51 |
+
image_patches = image_processor(image_path)
|
52 |
+
nh, nw = image_patches.shape[:2]
|
53 |
+
image_tokens, image_tokens_len = prepare_image_textual_seq_norowsep(nh, nw, tokenizer, add_cls=False)
|
54 |
+
|
55 |
+
input_tokens = image_tokens + prompt_inp
|
56 |
+
input_ids = tokenizer(input_tokens, add_special_tokens=False, return_tensors="pt").input_ids
|
57 |
+
vision_patch_indices = torch.full_like(input_ids, fill_value=NON_VISION_TOKEN_ID)
|
58 |
+
vision_patches = image_patches.view(nh * nw, -1)
|
59 |
+
assert (input_ids == tokenizer.vis_patch_tok_id).sum() == vision_patches.size(0)
|
60 |
+
assert (input_ids >= tokenizer.vis_beg_tok_id).sum() == image_tokens_len
|
61 |
+
|
62 |
+
vision_patch_indices[input_ids==tokenizer.vis_patch_tok_id] = torch.arange(vision_patches.size(0))
|
63 |
+
attention_mask = create_single_prefix_mask(image_tokens_len, input_ids.size(-1)).unsqueeze(0).unsqueeze(0)
|
64 |
+
position_ids = generate_mm_pos_ids_singleit(input_ids.squeeze(0).numpy().tolist(), tokenizer.vis_patch_tok_id, nh, nw).unsqueeze(1)
|
65 |
+
|
66 |
+
input_ids = input_ids.long().cuda()
|
67 |
+
vision_patch_indices = vision_patch_indices.long().cuda()
|
68 |
+
vision_patches = vision_patches.to(torch.bfloat16).cuda()
|
69 |
+
position_ids = position_ids.long().cuda()
|
70 |
+
attention_mask = attention_mask.cuda()
|
71 |
+
|
72 |
+
padding_attention_mask = torch.ones_like(input_ids).cuda()
|
73 |
+
|
74 |
+
inputs = dict(
|
75 |
+
input_ids = input_ids,
|
76 |
+
position_ids = position_ids,
|
77 |
+
attention_mask = padding_attention_mask,
|
78 |
+
vision_patches = vision_patches,
|
79 |
+
vision_patch_indices = vision_patch_indices,
|
80 |
+
use_cache=True
|
81 |
+
)
|
82 |
+
|
83 |
+
cached_inputs = dict(
|
84 |
+
input_ids = input_ids[:, :image_tokens_len],
|
85 |
+
position_ids = position_ids[:, :, :image_tokens_len],
|
86 |
+
attention_mask = attention_mask[:,:, :image_tokens_len, :image_tokens_len],
|
87 |
+
vision_patches = vision_patches,
|
88 |
+
vision_patch_indices = vision_patch_indices[:, :image_tokens_len],
|
89 |
+
use_cache=True
|
90 |
+
)
|
91 |
+
|
92 |
+
prefix_cache = DynamicCache()
|
93 |
+
with torch.no_grad():
|
94 |
+
prefix_cache = model.forward(**cached_inputs, past_key_values=prefix_cache).past_key_values
|
95 |
+
|
96 |
+
past_key_values = copy.deepcopy(prefix_cache)
|
97 |
+
generate_config = GenerationConfig(
|
98 |
+
max_new_tokens=1024,
|
99 |
+
return_dict_in_generate=True,
|
100 |
+
output_attentions=False
|
101 |
+
)
|
102 |
+
generated = model.generate(
|
103 |
+
**inputs,
|
104 |
+
past_key_values=past_key_values,
|
105 |
+
generation_config=generate_config
|
106 |
+
)
|
107 |
+
generated_ids = generated['sequences'][:, input_ids.size(1):]
|
108 |
+
response = tokenizer.batch_decode(
|
109 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
110 |
+
)[0]
|
111 |
+
|
112 |
+
print(f"\nModel Response: ===\n{response}\n===")
|
113 |
+
```
|
114 |
+
|
115 |
+
## Citation
|
116 |
+
|
117 |
+
If you find this project useful in your research, please consider citing:
|
118 |
+
|
119 |
+
```BibTeX
|
120 |
+
@article{lei2025sail,
|
121 |
+
title={The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer},
|
122 |
+
author={Lei, Weixian and Wang, Jiacong and Wang, Haochen and Li, Xiangtai and Liew, Jun Hao and Feng, Jiashi and Huang, Zilong},
|
123 |
+
journal={arXiv preprint arXiv:2504.10462},
|
124 |
+
year={2025}
|
125 |
+
}
|
126 |
+
```
|