|
--- |
|
license: apache-2.0 |
|
base_model: google/canine-s |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: sentence_splitter_final_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sentence_splitter_final_v2 |
|
|
|
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Precision: 0.8 |
|
- Recall: 1.0 |
|
- F1: 0.8889 |
|
- Accuracy: 1.0000 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 95 | 0.0037 | 0.0690 | 0.5 | 0.1212 | 0.9988 | |
|
| No log | 2.0 | 190 | 0.0022 | 0.0909 | 1.0 | 0.1667 | 0.9993 | |
|
| No log | 3.0 | 285 | 0.0014 | 0.1333 | 1.0 | 0.2353 | 0.9995 | |
|
| No log | 4.0 | 380 | 0.0010 | 0.1905 | 1.0 | 0.32 | 0.9996 | |
|
| No log | 5.0 | 475 | 0.0008 | 0.25 | 1.0 | 0.4 | 0.9997 | |
|
| 0.0096 | 6.0 | 570 | 0.0004 | 0.3636 | 1.0 | 0.5333 | 0.9998 | |
|
| 0.0096 | 7.0 | 665 | 0.0004 | 0.2222 | 1.0 | 0.3636 | 0.9999 | |
|
| 0.0096 | 8.0 | 760 | 0.0002 | 0.4 | 1.0 | 0.5714 | 0.9999 | |
|
| 0.0096 | 9.0 | 855 | 0.0003 | 0.1905 | 1.0 | 0.32 | 0.9999 | |
|
| 0.0096 | 10.0 | 950 | 0.0003 | 0.2105 | 1.0 | 0.3478 | 0.9999 | |
|
| 0.0008 | 11.0 | 1045 | 0.0001 | 0.3333 | 1.0 | 0.5 | 1.0000 | |
|
| 0.0008 | 12.0 | 1140 | 0.0001 | 0.5 | 1.0 | 0.6667 | 1.0000 | |
|
| 0.0008 | 13.0 | 1235 | 0.0001 | 0.4444 | 1.0 | 0.6154 | 1.0000 | |
|
| 0.0008 | 14.0 | 1330 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0008 | 15.0 | 1425 | 0.0000 | 0.6667 | 1.0 | 0.8 | 1.0000 | |
|
| 0.0003 | 16.0 | 1520 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0003 | 17.0 | 1615 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0003 | 18.0 | 1710 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0003 | 19.0 | 1805 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0003 | 20.0 | 1900 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0003 | 21.0 | 1995 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0001 | 22.0 | 2090 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0001 | 23.0 | 2185 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0001 | 24.0 | 2280 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
| 0.0001 | 25.0 | 2375 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|