File size: 3,735 Bytes
8d9b805 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: google/canine-s
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: sentence_splitter_final_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentence_splitter_final_v2
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 0.8
- Recall: 1.0
- F1: 0.8889
- Accuracy: 1.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 95 | 0.0037 | 0.0690 | 0.5 | 0.1212 | 0.9988 |
| No log | 2.0 | 190 | 0.0022 | 0.0909 | 1.0 | 0.1667 | 0.9993 |
| No log | 3.0 | 285 | 0.0014 | 0.1333 | 1.0 | 0.2353 | 0.9995 |
| No log | 4.0 | 380 | 0.0010 | 0.1905 | 1.0 | 0.32 | 0.9996 |
| No log | 5.0 | 475 | 0.0008 | 0.25 | 1.0 | 0.4 | 0.9997 |
| 0.0096 | 6.0 | 570 | 0.0004 | 0.3636 | 1.0 | 0.5333 | 0.9998 |
| 0.0096 | 7.0 | 665 | 0.0004 | 0.2222 | 1.0 | 0.3636 | 0.9999 |
| 0.0096 | 8.0 | 760 | 0.0002 | 0.4 | 1.0 | 0.5714 | 0.9999 |
| 0.0096 | 9.0 | 855 | 0.0003 | 0.1905 | 1.0 | 0.32 | 0.9999 |
| 0.0096 | 10.0 | 950 | 0.0003 | 0.2105 | 1.0 | 0.3478 | 0.9999 |
| 0.0008 | 11.0 | 1045 | 0.0001 | 0.3333 | 1.0 | 0.5 | 1.0000 |
| 0.0008 | 12.0 | 1140 | 0.0001 | 0.5 | 1.0 | 0.6667 | 1.0000 |
| 0.0008 | 13.0 | 1235 | 0.0001 | 0.4444 | 1.0 | 0.6154 | 1.0000 |
| 0.0008 | 14.0 | 1330 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0008 | 15.0 | 1425 | 0.0000 | 0.6667 | 1.0 | 0.8 | 1.0000 |
| 0.0003 | 16.0 | 1520 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0003 | 17.0 | 1615 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0003 | 18.0 | 1710 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0003 | 19.0 | 1805 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0003 | 20.0 | 1900 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0003 | 21.0 | 1995 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0001 | 22.0 | 2090 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0001 | 23.0 | 2185 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0001 | 24.0 | 2280 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
| 0.0001 | 25.0 | 2375 | 0.0000 | 0.8 | 1.0 | 0.8889 | 1.0000 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|