tf_segformer_for_semantic_segmentation_v4

This model is a fine-tuned version of ArtemShyshko/tf_segformer_for_semantic_segmentation_v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1650
  • Validation Loss: 0.2153
  • Validation Mean Iou: 0.6876
  • Validation Mean Accuracy: 0.9048
  • Validation Overall Accuracy: 0.9199
  • Validation Accuracy Unlabeled: nan
  • Validation Accuracy Building: 0.9185
  • Validation Accuracy Land: 0.9449
  • Validation Accuracy Road: 0.8327
  • Validation Accuracy Vegetation: 0.8659
  • Validation Accuracy Water: 0.9617
  • Validation Iou Unlabeled: 0.0
  • Validation Iou Building: 0.8219
  • Validation Iou Land: 0.9131
  • Validation Iou Road: 0.7215
  • Validation Iou Vegetation: 0.7242
  • Validation Iou Water: 0.9446
  • Epoch: 49

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Accuracy Unlabeled Validation Accuracy Building Validation Accuracy Land Validation Accuracy Road Validation Accuracy Vegetation Validation Accuracy Water Validation Iou Unlabeled Validation Iou Building Validation Iou Land Validation Iou Road Validation Iou Vegetation Validation Iou Water Epoch
0.2467 0.2755 0.6468 0.8761 0.8850 nan 0.9232 0.9014 0.8291 0.7739 0.9529 0.0 0.7716 0.8658 0.6733 0.6420 0.9280 0
0.2367 0.2769 0.6553 0.8753 0.8970 nan 0.9238 0.9310 0.7846 0.7702 0.9671 0.0 0.7730 0.8842 0.6751 0.6636 0.9356 1
0.2406 0.3519 0.6367 0.8676 0.8789 nan 0.8361 0.9081 0.7676 0.9095 0.9169 0.0 0.7527 0.8729 0.6552 0.6379 0.9013 2
0.2348 0.2933 0.6570 0.8832 0.9020 nan 0.8996 0.9290 0.8104 0.8389 0.9380 0.0 0.7799 0.8954 0.6720 0.6820 0.9125 3
0.2336 0.2938 0.6564 0.8851 0.8900 nan 0.9009 0.9052 0.8029 0.8619 0.9546 0.0 0.7787 0.8662 0.6791 0.6865 0.9279 4
0.2376 0.2802 0.6517 0.8767 0.8889 nan 0.8726 0.9189 0.7901 0.8472 0.9548 0.0 0.7803 0.8701 0.6728 0.6518 0.9351 5
0.2367 0.2769 0.6584 0.8787 0.9003 nan 0.9103 0.9317 0.8161 0.8120 0.9234 0.0 0.7769 0.8935 0.6936 0.6841 0.9023 6
0.2507 0.2647 0.6606 0.8887 0.8902 nan 0.9096 0.8991 0.8177 0.8655 0.9517 0.0 0.7848 0.8550 0.6809 0.7212 0.9216 7
0.2220 0.2647 0.6520 0.8755 0.8888 nan 0.9019 0.9207 0.8034 0.8054 0.9459 0.0 0.7771 0.8728 0.6830 0.6600 0.9194 8
0.2384 0.2602 0.6627 0.8821 0.8941 nan 0.9051 0.9254 0.8178 0.7913 0.9711 0.0 0.7900 0.8708 0.6862 0.6855 0.9437 9
0.2066 0.2682 0.6584 0.8797 0.8947 nan 0.8881 0.9245 0.7584 0.8780 0.9495 0.0 0.7857 0.8756 0.6560 0.7086 0.9246 10
0.2247 0.2975 0.6574 0.8844 0.8961 nan 0.8884 0.9223 0.7936 0.8745 0.9432 0.0 0.7915 0.8862 0.6822 0.6724 0.9123 11
0.2261 0.2969 0.6598 0.8815 0.9060 nan 0.9053 0.9372 0.7996 0.8116 0.9539 0.0 0.7777 0.8957 0.6733 0.6864 0.9259 12
0.2089 0.3076 0.6623 0.8983 0.9017 nan 0.9136 0.9111 0.8503 0.8682 0.9484 0.0 0.7756 0.8870 0.6867 0.7028 0.9220 13
0.2105 0.2626 0.6672 0.8844 0.9068 nan 0.8999 0.9426 0.7893 0.8336 0.9565 0.0 0.7941 0.8967 0.6793 0.6950 0.9383 14
0.2076 0.2772 0.6623 0.8839 0.8983 nan 0.9070 0.9260 0.7668 0.8572 0.9624 0.0 0.7831 0.8851 0.6612 0.7057 0.9388 15
0.2083 0.2664 0.6675 0.8814 0.9068 nan 0.8879 0.9491 0.8269 0.7909 0.9520 0.0 0.7876 0.8973 0.7071 0.6836 0.9295 16
0.2248 0.2665 0.6701 0.8895 0.9022 nan 0.9080 0.9308 0.8070 0.8489 0.9527 0.0 0.7985 0.8846 0.6915 0.7227 0.9233 17
0.2047 0.2568 0.6634 0.8846 0.9119 nan 0.9280 0.9419 0.7913 0.8303 0.9316 0.0 0.7889 0.9093 0.6815 0.6865 0.9142 18
0.2068 0.2512 0.6711 0.8978 0.8992 nan 0.9060 0.9058 0.8462 0.8982 0.9330 0.0 0.7949 0.8736 0.6881 0.7596 0.9101 19
0.1991 0.2676 0.6721 0.8920 0.9029 nan 0.9295 0.9232 0.7967 0.8581 0.9524 0.0 0.7934 0.8871 0.6849 0.7333 0.9341 20
0.2191 0.2659 0.6677 0.8894 0.9005 nan 0.9404 0.9180 0.8045 0.8251 0.9591 0.0 0.8064 0.8839 0.6820 0.6952 0.9384 21
0.1970 0.2853 0.6735 0.8995 0.9099 nan 0.9171 0.9268 0.8364 0.8649 0.9520 0.0 0.8005 0.9006 0.7030 0.7028 0.9338 22
0.1915 0.2762 0.6668 0.8788 0.9035 nan 0.9152 0.9446 0.8138 0.7688 0.9519 0.0 0.7978 0.8899 0.7077 0.6770 0.9286 23
0.2052 0.2811 0.6643 0.8813 0.9016 nan 0.8935 0.9396 0.7971 0.8198 0.9563 0.0 0.7984 0.8828 0.6914 0.6915 0.9218 24
0.1869 0.2700 0.6673 0.8848 0.9033 nan 0.9119 0.9345 0.7530 0.8789 0.9458 0.0 0.7954 0.8913 0.6736 0.7233 0.9201 25
0.1792 0.2457 0.6718 0.8948 0.9091 nan 0.9382 0.9292 0.8370 0.8277 0.9422 0.0 0.7998 0.9052 0.6937 0.7086 0.9236 26
0.1800 0.2548 0.6763 0.8980 0.9066 nan 0.9288 0.9219 0.8142 0.8690 0.9562 0.0 0.8098 0.8899 0.6983 0.7221 0.9378 27
0.1817 0.2376 0.6722 0.8916 0.9119 nan 0.9263 0.9397 0.8103 0.8333 0.9483 0.0 0.8046 0.9095 0.6872 0.7042 0.9275 28
0.1819 0.2529 0.6830 0.9084 0.9146 nan 0.9167 0.9243 0.8381 0.8899 0.9731 0.0 0.8121 0.9013 0.6987 0.7376 0.9484 29
0.1886 0.2466 0.6713 0.8867 0.9029 nan 0.9136 0.9348 0.7895 0.8383 0.9571 0.0 0.7964 0.8824 0.6828 0.7288 0.9374 30
0.2018 0.2568 0.6678 0.8849 0.9069 nan 0.9198 0.9402 0.8335 0.7745 0.9564 0.0 0.7950 0.8920 0.7093 0.6994 0.9114 31
0.1954 0.2296 0.6734 0.8940 0.9163 nan 0.8895 0.9466 0.8254 0.8546 0.9538 0.0 0.7993 0.9096 0.6943 0.7081 0.9292 32
0.1849 0.2215 0.6684 0.8923 0.9023 nan 0.9052 0.9234 0.7964 0.8880 0.9486 0.0 0.8043 0.8871 0.6884 0.7043 0.9263 33
0.1941 0.2405 0.6742 0.8964 0.9164 nan 0.9040 0.9440 0.8431 0.8437 0.9471 0.0 0.7987 0.9139 0.7265 0.6853 0.9210 34
0.1881 0.2605 0.6642 0.8888 0.9023 nan 0.8699 0.9318 0.8009 0.8862 0.9553 0.0 0.7893 0.8879 0.6939 0.6788 0.9353 35
0.1943 0.2699 0.6777 0.8968 0.9079 nan 0.9107 0.9318 0.8230 0.8593 0.9592 0.0 0.8178 0.8914 0.7058 0.7155 0.9358 36
0.1872 0.2382 0.6859 0.9060 0.9130 nan 0.9350 0.9265 0.8462 0.8647 0.9575 0.0 0.8186 0.8951 0.7148 0.7501 0.9367 37
0.1887 0.2526 0.6795 0.8990 0.9080 nan 0.9147 0.9278 0.8445 0.8660 0.9418 0.0 0.8114 0.8844 0.7228 0.7462 0.9125 38
0.1865 0.2354 0.6789 0.8966 0.9103 nan 0.9246 0.9360 0.8430 0.8216 0.9576 0.0 0.8185 0.8953 0.7082 0.7200 0.9316 39
0.1828 0.2307 0.6804 0.8986 0.9101 nan 0.8899 0.9370 0.8666 0.8531 0.9464 0.0 0.8115 0.8902 0.7156 0.7484 0.9166 40
0.1804 0.2335 0.6764 0.8951 0.9114 nan 0.9012 0.9405 0.8371 0.8464 0.9507 0.0 0.8047 0.8982 0.7301 0.7010 0.9245 41
0.1795 0.2624 0.6826 0.8998 0.9151 nan 0.9294 0.9372 0.8116 0.8699 0.9510 0.0 0.8257 0.9003 0.7014 0.7381 0.9304 42
0.1777 0.2251 0.6863 0.9010 0.9164 nan 0.9130 0.9427 0.8211 0.8754 0.9528 0.0 0.8200 0.9004 0.7167 0.7506 0.9301 43
0.1750 0.2294 0.6769 0.8958 0.9019 nan 0.9304 0.9174 0.8202 0.8608 0.9502 0.0 0.8213 0.8742 0.7147 0.7251 0.9258 44
0.1669 0.2141 0.6816 0.9014 0.9107 nan 0.9209 0.9305 0.8525 0.8350 0.9681 0.0 0.8216 0.8964 0.7116 0.7166 0.9432 45
0.1622 0.2484 0.6736 0.8954 0.9093 nan 0.9411 0.9309 0.8257 0.8152 0.9639 0.0 0.8113 0.8988 0.7015 0.6999 0.9302 46
0.1859 0.2145 0.6757 0.8942 0.9134 nan 0.9466 0.9325 0.8332 0.7897 0.9689 0.0 0.8232 0.9005 0.7140 0.6672 0.9491 47
0.1693 0.2243 0.6817 0.9000 0.9120 nan 0.9198 0.9342 0.8038 0.8742 0.9682 0.0 0.8232 0.8962 0.6932 0.7314 0.9461 48
0.1650 0.2153 0.6876 0.9048 0.9199 nan 0.9185 0.9449 0.8327 0.8659 0.9617 0.0 0.8219 0.9131 0.7215 0.7242 0.9446 49

Framework versions

  • Transformers 4.37.2
  • TensorFlow 2.11.0
  • Datasets 3.3.1
  • Tokenizers 0.15.2
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ArtemShyshko/tf_segformer_for_semantic_segmentation_v4

Base model

nvidia/mit-b0
Finetuned
(1)
this model