tf_segformer_for_semantic_segmentation_v3

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2414
  • Validation Loss: 0.2879
  • Validation Mean Iou: 0.6578
  • Validation Mean Accuracy: 0.8810
  • Validation Overall Accuracy: 0.9074
  • Validation Accuracy Unlabeled: nan
  • Validation Accuracy Building: 0.9097
  • Validation Accuracy Land: 0.9396
  • Validation Accuracy Road: 0.8000
  • Validation Accuracy Vegetation: 0.8165
  • Validation Accuracy Water: 0.9392
  • Validation Iou Unlabeled: 0.0
  • Validation Iou Building: 0.7772
  • Validation Iou Land: 0.9028
  • Validation Iou Road: 0.6828
  • Validation Iou Vegetation: 0.6714
  • Validation Iou Water: 0.9125
  • Epoch: 49

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 6e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Mean Iou Validation Mean Accuracy Validation Overall Accuracy Validation Accuracy Unlabeled Validation Accuracy Building Validation Accuracy Land Validation Accuracy Road Validation Accuracy Vegetation Validation Accuracy Water Validation Iou Unlabeled Validation Iou Building Validation Iou Land Validation Iou Road Validation Iou Vegetation Validation Iou Water Epoch
1.4526 0.8367 0.4904 0.7407 0.7665 nan 0.8805 0.8041 0.4586 0.6741 0.8860 0.0 0.5858 0.7562 0.3475 0.4603 0.7926 0
0.9142 0.8189 0.4817 0.7306 0.7891 nan 0.8061 0.8595 0.5010 0.7384 0.7477 0.0 0.6034 0.8033 0.3891 0.4754 0.6193 1
0.8439 0.6237 0.5236 0.7804 0.8064 nan 0.8191 0.8573 0.6912 0.6527 0.8817 0.0 0.6321 0.8009 0.4659 0.5053 0.7374 2
0.7108 0.4985 0.5541 0.7800 0.8242 nan 0.8262 0.9105 0.6019 0.6743 0.8872 0.0 0.6613 0.7989 0.4979 0.5621 0.8042 3
0.6197 0.5273 0.5573 0.7976 0.8330 nan 0.8263 0.9030 0.7527 0.5885 0.9176 0.0 0.6898 0.8121 0.5267 0.5201 0.7950 4
0.6202 0.4948 0.5699 0.8110 0.8453 nan 0.8221 0.8921 0.7786 0.6705 0.8913 0.0 0.6880 0.8297 0.5585 0.5145 0.8285 5
0.5454 0.4675 0.5851 0.8227 0.8442 nan 0.8582 0.8823 0.8103 0.6061 0.9564 0.0 0.6922 0.8086 0.5854 0.5328 0.8918 6
0.5566 0.4371 0.5819 0.8162 0.8512 nan 0.8316 0.9073 0.7572 0.6785 0.9065 0.0 0.6899 0.8392 0.5751 0.5413 0.8461 7
0.5456 0.4071 0.6949 0.8177 0.8394 nan 0.8253 0.8993 0.7893 0.6329 0.9419 nan 0.6964 0.8189 0.5692 0.5349 0.8549 8
0.4690 0.4223 0.7227 0.8386 0.8695 nan 0.8670 0.9101 0.7523 0.7607 0.9030 nan 0.6947 0.8547 0.5985 0.6205 0.8450 9
0.4529 0.4232 0.7150 0.8162 0.8821 nan 0.8292 0.9446 0.7629 0.5798 0.9642 nan 0.7179 0.8763 0.5976 0.5008 0.8824 10
0.4981 0.4245 0.7228 0.8380 0.8533 nan 0.8670 0.8952 0.7708 0.7406 0.9164 nan 0.7185 0.8274 0.6025 0.6131 0.8525 11
0.4228 0.4220 0.7169 0.8353 0.8518 nan 0.8611 0.8920 0.7923 0.6990 0.9322 nan 0.7122 0.8267 0.5888 0.5889 0.8679 12
0.4255 0.3802 0.6233 0.8495 0.8762 nan 0.8466 0.9237 0.7867 0.7465 0.9441 0.0 0.7233 0.8528 0.6567 0.6183 0.8886 13
0.4457 0.4365 0.7254 0.8327 0.8693 nan 0.8500 0.9243 0.8040 0.6128 0.9722 nan 0.7290 0.8538 0.6080 0.5445 0.8917 14
0.4173 0.3841 0.6104 0.8470 0.8702 nan 0.8736 0.9048 0.7940 0.7135 0.9493 0.0 0.7304 0.8491 0.6228 0.5789 0.8812 15
0.3853 0.3850 0.7315 0.8385 0.8794 nan 0.8490 0.9274 0.8012 0.6797 0.9349 nan 0.7278 0.8684 0.6104 0.5668 0.8840 16
0.3878 0.3584 0.6125 0.8333 0.8776 nan 0.8501 0.9372 0.7605 0.6868 0.9320 0.0 0.7171 0.8644 0.6342 0.5848 0.8748 17
0.3712 0.3656 0.7346 0.8374 0.8701 nan 0.8502 0.9288 0.8080 0.6459 0.9539 nan 0.7293 0.8599 0.6076 0.5570 0.9193 18
0.3599 0.3579 0.6272 0.8596 0.8796 nan 0.8910 0.9121 0.8196 0.7660 0.9093 0.0 0.7358 0.8709 0.6404 0.6403 0.8758 19
0.3553 0.3772 0.7371 0.8366 0.8702 nan 0.8727 0.9261 0.7609 0.7066 0.9165 nan 0.7314 0.8508 0.6217 0.6103 0.8715 20
0.3575 0.3076 0.7509 0.8477 0.8782 nan 0.8486 0.9322 0.7724 0.7382 0.9472 nan 0.7268 0.8575 0.6197 0.6427 0.9080 21
0.3574 0.3587 0.6171 0.8376 0.8730 nan 0.8116 0.9386 0.8013 0.7115 0.9252 0.0 0.7260 0.8539 0.6531 0.5915 0.8783 22
0.3441 0.3546 0.6244 0.8566 0.8773 nan 0.8605 0.9106 0.8081 0.7666 0.9372 0.0 0.7214 0.8583 0.6324 0.6287 0.9054 23
0.3272 0.3879 0.6356 0.8645 0.8830 nan 0.8536 0.9187 0.7823 0.8268 0.9412 0.0 0.7377 0.8671 0.6367 0.6561 0.9160 24
0.3349 0.3440 0.6224 0.8474 0.8776 nan 0.8202 0.9365 0.7851 0.7852 0.9101 0.0 0.7372 0.8732 0.6418 0.6020 0.8802 25
0.3297 0.3825 0.6282 0.8582 0.8791 nan 0.8002 0.9170 0.7873 0.8529 0.9334 0.0 0.7102 0.8569 0.6205 0.6699 0.9117 26
0.3612 0.3368 0.6213 0.8429 0.8749 nan 0.8787 0.9287 0.7290 0.7225 0.9557 0.0 0.7496 0.8513 0.6246 0.6033 0.8989 27
0.3062 0.3057 0.6322 0.8566 0.8824 nan 0.9034 0.9204 0.7822 0.7184 0.9585 0.0 0.7574 0.8629 0.6293 0.6130 0.9304 28
0.3014 0.3295 0.6323 0.8528 0.8867 nan 0.8591 0.9423 0.7520 0.7583 0.9520 0.0 0.7497 0.8783 0.6324 0.6216 0.9117 29
0.3040 0.2963 0.6321 0.8604 0.8738 nan 0.8959 0.9064 0.7845 0.7703 0.9451 0.0 0.7565 0.8413 0.6466 0.6575 0.8904 30
0.2993 0.3428 0.6398 0.8676 0.8839 nan 0.8966 0.9122 0.8000 0.8014 0.9280 0.0 0.7597 0.8636 0.6597 0.6551 0.9005 31
0.3216 0.3200 0.6399 0.8620 0.8920 nan 0.8787 0.9374 0.7806 0.7470 0.9660 0.0 0.7557 0.8794 0.6513 0.6330 0.9199 32
0.3160 0.3261 0.6219 0.8580 0.8768 nan 0.8980 0.9022 0.8299 0.7000 0.9600 0.0 0.7370 0.8564 0.6536 0.5784 0.9062 33
0.3045 0.3550 0.6462 0.8639 0.9011 nan 0.8732 0.9450 0.8075 0.7252 0.9686 0.0 0.7674 0.8872 0.6693 0.6262 0.9273 34
0.2839 0.3102 0.6421 0.8618 0.8895 nan 0.9091 0.9314 0.7588 0.7451 0.9646 0.0 0.7695 0.8729 0.6418 0.6417 0.9264 35
0.3003 0.2942 0.6253 0.8502 0.8824 nan 0.9090 0.9207 0.8180 0.6335 0.9701 0.0 0.7566 0.8691 0.6745 0.5433 0.9081 36
0.2726 0.3068 0.6369 0.8642 0.8880 nan 0.9063 0.9213 0.8244 0.7194 0.9498 0.0 0.7534 0.8755 0.6625 0.6225 0.9077 37
0.2700 0.3095 0.6421 0.8645 0.8818 nan 0.8651 0.9209 0.7934 0.7898 0.9532 0.0 0.7606 0.8526 0.6613 0.6499 0.9279 38
0.2835 0.2986 0.6391 0.8598 0.8906 nan 0.8870 0.9343 0.7945 0.7351 0.9481 0.0 0.7588 0.8776 0.6573 0.6247 0.9160 39
0.2746 0.2812 0.6401 0.8652 0.8895 nan 0.8654 0.9247 0.7898 0.7820 0.9642 0.0 0.7451 0.8659 0.6704 0.6198 0.9394 40
0.2866 0.3194 0.6506 0.8679 0.8943 nan 0.8787 0.9420 0.8137 0.7722 0.9330 0.0 0.7775 0.8787 0.6729 0.6738 0.9005 41
0.2641 0.3372 0.6415 0.8745 0.8794 nan 0.8758 0.9017 0.7996 0.8507 0.9446 0.0 0.7665 0.8619 0.6275 0.6932 0.9001 42
0.2396 0.3112 0.6466 0.8604 0.8889 nan 0.8734 0.9432 0.7511 0.7938 0.9403 0.0 0.7722 0.8680 0.6424 0.6795 0.9173 43
0.2566 0.3336 0.6475 0.8762 0.8850 nan 0.8915 0.9044 0.7995 0.8637 0.9222 0.0 0.7743 0.8640 0.6572 0.6878 0.9016 44
0.2612 0.3152 0.6522 0.8776 0.8978 nan 0.8580 0.9306 0.8161 0.8183 0.9651 0.0 0.7516 0.8810 0.6798 0.6604 0.9404 45
0.2442 0.2982 0.6471 0.8749 0.8923 nan 0.8858 0.9214 0.8028 0.8284 0.9363 0.0 0.7642 0.8778 0.6724 0.6602 0.9078 46
0.2418 0.3066 0.6460 0.8689 0.8871 nan 0.8999 0.9207 0.7802 0.8186 0.9248 0.0 0.7754 0.8710 0.6689 0.6587 0.9020 47
0.2410 0.2876 0.6493 0.8697 0.8940 nan 0.8915 0.9324 0.7913 0.7950 0.9382 0.0 0.7792 0.8757 0.6665 0.6756 0.8986 48
0.2414 0.2879 0.6578 0.8810 0.9074 nan 0.9097 0.9396 0.8000 0.8165 0.9392 0.0 0.7772 0.9028 0.6828 0.6714 0.9125 49

Framework versions

  • Transformers 4.37.2
  • TensorFlow 2.11.0
  • Datasets 3.3.1
  • Tokenizers 0.15.2
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ArtemShyshko/tf_segformer_for_semantic_segmentation_v3

Base model

nvidia/mit-b0
Finetuned
(387)
this model
Finetunes
1 model