A newer version of this model is available:
AnasAlokla/multilingual_go_emotions
Overview
Model trained from bert-base-multilingual-cased on the multilingual_go_emotions dataset for multi-label classification.
Multilingual GoEmotions Chatbot Task Report
Author: Anas Hamid Alokla
This repository/space contains details about a multilingual emotion classification model and chatbot based on the GoEmotions dataset.
Links
- Live Demo: https://huggingface.co/spaces/AnasAlokla/test_emotion_chatbot
- Dataset (Supports 6 Languages): https://huggingface.co/datasets/AnasAlokla/multilingual_go_emotions
- Model Used: https://huggingface.co/AnasAlokla/multilingual_go_emotions
- GitHub Code: https://github.com/anasAloklah/emotion_chatbot
Test Set Performance
The following table shows the performance metrics of the fine-tuned model on the test set, broken down by emotion category.
The table below shows the performance of the test model:
Performance of Test Model (using class weight)
Labels | accuracy | precision | recall | f1 | mcc | support | threshold |
---|---|---|---|---|---|---|---|
admiration | 0.933 | 0.598 | 0.668 | 0.631 | 0.596 | 2790 | 0.15 |
amusement | 0.967 | 0.682 | 0.793 | 0.733 | 0.718 | 1866 | 0.10 |
anger | 0.952 | 0.327 | 0.356 | 0.341 | 0.317 | 1128 | 0.15 |
annoyance | 0.908 | 0.223 | 0.301 | 0.256 | 0.211 | 1704 | 0.10 |
approval | 0.920 | 0.351 | 0.288 | 0.317 | 0.276 | 2094 | 0.15 |
caring | 0.970 | 0.381 | 0.303 | 0.337 | 0.325 | 816 | 0.20 |
confusion | 0.959 | 0.359 | 0.390 | 0.374 | 0.353 | 1020 | 0.25 |
curiosity | 0.933 | 0.405 | 0.552 | 0.467 | 0.438 | 1734 | 0.10 |
desire | 0.984 | 0.385 | 0.420 | 0.402 | 0.394 | 414 | 0.30 |
disappointment | 0.958 | 0.278 | 0.216 | 0.243 | 0.224 | 1014 | 0.40 |
disapproval | 0.920 | 0.221 | 0.343 | 0.269 | 0.235 | 1398 | 0.10 |
disgust | 0.972 | 0.302 | 0.383 | 0.338 | 0.326 | 600 | 0.15 |
embarrassment | 0.991 | 0.388 | 0.346 | 0.366 | 0.362 | 240 | 0.45 |
excitement | 0.968 | 0.248 | 0.333 | 0.285 | 0.272 | 624 | 0.10 |
fear | 0.985 | 0.501 | 0.526 | 0.513 | 0.506 | 498 | 0.20 |
gratitude | 0.988 | 0.913 | 0.894 | 0.903 | 0.897 | 2004 | 0.35 |
grief | 0.999 | 0.529 | 0.250 | 0.340 | 0.363 | 36 | 0.85 |
joy | 0.959 | 0.381 | 0.472 | 0.422 | 0.403 | 1032 | 0.15 |
love | 0.971 | 0.715 | 0.789 | 0.750 | 0.736 | 1812 | 0.25 |
nervousness | 0.996 | 0.430 | 0.283 | 0.342 | 0.347 | 120 | 0.70 |
optimism | 0.971 | 0.573 | 0.423 | 0.487 | 0.478 | 1062 | 0.45 |
pride | 0.997 | 0.468 | 0.262 | 0.336 | 0.349 | 84 | 0.25 |
realization | 0.967 | 0.220 | 0.146 | 0.176 | 0.163 | 792 | 0.25 |
relief | 0.993 | 0.117 | 0.094 | 0.104 | 0.102 | 138 | 0.10 |
remorse | 0.987 | 0.586 | 0.638 | 0.611 | 0.605 | 516 | 0.20 |
sadness | 0.960 | 0.415 | 0.519 | 0.461 | 0.444 | 1062 | 0.15 |
surprise | 0.975 | 0.518 | 0.425 | 0.467 | 0.457 | 828 | 0.60 |
neutral | 0.733 | 0.582 | 0.621 | 0.601 | 0.401 | 10524 | 0.10 |
Test Model Performance (Threshold = 0.5)
The table below shows the performance of the test model with a threshold of 0.5:
Labels | accuracy | precision | recall | f1 | mcc | support | threshold |
---|---|---|---|---|---|---|---|
admiration | 0.939 | 0.673 | 0.570 | 0.617 | 0.587 | 2790 | 0.5 |
amusement | 0.967 | 0.735 | 0.666 | 0.699 | 0.682 | 1866 | 0.5 |
anger | 0.961 | 0.400 | 0.264 | 0.318 | 0.306 | 1128 | 0.5 |
annoyance | 0.940 | 0.328 | 0.137 | 0.194 | 0.185 | 1704 | 0.5 |
approval | 0.931 | 0.432 | 0.211 | 0.283 | 0.269 | 2094 | 0.5 |
caring | 0.973 | 0.431 | 0.246 | 0.314 | 0.313 | 816 | 0.5 |
confusion | 0.963 | 0.401 | 0.337 | 0.366 | 0.349 | 1020 | 0.5 |
curiosity | 0.944 | 0.463 | 0.361 | 0.406 | 0.380 | 1734 | 0.5 |
desire | 0.985 | 0.409 | 0.384 | 0.396 | 0.389 | 414 | 0.5 |
disappointment | 0.961 | 0.300 | 0.198 | 0.239 | 0.224 | 1014 | 0.5 |
disapproval | 0.945 | 0.293 | 0.195 | 0.234 | 0.212 | 1398 | 0.5 |
disgust | 0.978 | 0.376 | 0.267 | 0.312 | 0.306 | 600 | 0.5 |
embarrassment | 0.991 | 0.392 | 0.333 | 0.360 | 0.357 | 240 | 0.5 |
excitement | 0.977 | 0.348 | 0.204 | 0.257 | 0.255 | 624 | 0.5 |
fear | 0.986 | 0.547 | 0.468 | 0.504 | 0.499 | 498 | 0.5 |
gratitude | 0.988 | 0.925 | 0.879 | 0.902 | 0.896 | 2004 | 0.5 |
grief | 0.999 | 0.400 | 0.278 | 0.328 | 0.333 | 36 | 0.5 |
joy | 0.966 | 0.451 | 0.367 | 0.405 | 0.389 | 1032 | 0.5 |
love | 0.971 | 0.742 | 0.747 | 0.744 | 0.729 | 1812 | 0.5 |
nervousness | 0.996 | 0.382 | 0.283 | 0.325 | 0.327 | 120 | 0.5 |
optimism | 0.971 | 0.583 | 0.413 | 0.484 | 0.477 | 1062 | 0.5 |
pride | 0.997 | 0.500 | 0.190 | 0.276 | 0.308 | 84 | 0.5 |
realization | 0.971 | 0.270 | 0.124 | 0.170 | 0.169 | 792 | 0.5 |
relief | 0.995 | 0.125 | 0.029 | 0.047 | 0.058 | 138 | 0.5 |
remorse | 0.988 | 0.644 | 0.560 | 0.599 | 0.594 | 516 | 0.5 |
sadness | 0.968 | 0.512 | 0.408 | 0.454 | 0.441 | 1062 | 0.5 |
surprise | 0.974 | 0.492 | 0.430 | 0.459 | 0.447 | 828 | 0.5 |
neutral | 0.742 | 0.648 | 0.440 | 0.524 | 0.368 | 10524 | 0.5 |
- Downloads last month
- 33
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for AnasAlokla/multilingual_go_emotions_V1.1
Base model
google-bert/bert-base-multilingual-cased
Finetuned
AnasAlokla/multilingual_go_emotions