A newer version of this model is available: AnasAlokla/multilingual_go_emotions

Overview

Model trained from bert-base-multilingual-cased on the multilingual_go_emotions dataset for multi-label classification.

Multilingual GoEmotions Chatbot Task Report

Author: Anas Hamid Alokla

This repository/space contains details about a multilingual emotion classification model and chatbot based on the GoEmotions dataset.

Links

Test Set Performance

The following table shows the performance metrics of the fine-tuned model on the test set, broken down by emotion category.

The table below shows the performance of the test model:

Performance of Test Model (using class weight)

Labels accuracy precision recall f1 mcc support threshold
admiration 0.933 0.598 0.668 0.631 0.596 2790 0.15
amusement 0.967 0.682 0.793 0.733 0.718 1866 0.10
anger 0.952 0.327 0.356 0.341 0.317 1128 0.15
annoyance 0.908 0.223 0.301 0.256 0.211 1704 0.10
approval 0.920 0.351 0.288 0.317 0.276 2094 0.15
caring 0.970 0.381 0.303 0.337 0.325 816 0.20
confusion 0.959 0.359 0.390 0.374 0.353 1020 0.25
curiosity 0.933 0.405 0.552 0.467 0.438 1734 0.10
desire 0.984 0.385 0.420 0.402 0.394 414 0.30
disappointment 0.958 0.278 0.216 0.243 0.224 1014 0.40
disapproval 0.920 0.221 0.343 0.269 0.235 1398 0.10
disgust 0.972 0.302 0.383 0.338 0.326 600 0.15
embarrassment 0.991 0.388 0.346 0.366 0.362 240 0.45
excitement 0.968 0.248 0.333 0.285 0.272 624 0.10
fear 0.985 0.501 0.526 0.513 0.506 498 0.20
gratitude 0.988 0.913 0.894 0.903 0.897 2004 0.35
grief 0.999 0.529 0.250 0.340 0.363 36 0.85
joy 0.959 0.381 0.472 0.422 0.403 1032 0.15
love 0.971 0.715 0.789 0.750 0.736 1812 0.25
nervousness 0.996 0.430 0.283 0.342 0.347 120 0.70
optimism 0.971 0.573 0.423 0.487 0.478 1062 0.45
pride 0.997 0.468 0.262 0.336 0.349 84 0.25
realization 0.967 0.220 0.146 0.176 0.163 792 0.25
relief 0.993 0.117 0.094 0.104 0.102 138 0.10
remorse 0.987 0.586 0.638 0.611 0.605 516 0.20
sadness 0.960 0.415 0.519 0.461 0.444 1062 0.15
surprise 0.975 0.518 0.425 0.467 0.457 828 0.60
neutral 0.733 0.582 0.621 0.601 0.401 10524 0.10

Test Model Performance (Threshold = 0.5)

The table below shows the performance of the test model with a threshold of 0.5:

Labels accuracy precision recall f1 mcc support threshold
admiration 0.939 0.673 0.570 0.617 0.587 2790 0.5
amusement 0.967 0.735 0.666 0.699 0.682 1866 0.5
anger 0.961 0.400 0.264 0.318 0.306 1128 0.5
annoyance 0.940 0.328 0.137 0.194 0.185 1704 0.5
approval 0.931 0.432 0.211 0.283 0.269 2094 0.5
caring 0.973 0.431 0.246 0.314 0.313 816 0.5
confusion 0.963 0.401 0.337 0.366 0.349 1020 0.5
curiosity 0.944 0.463 0.361 0.406 0.380 1734 0.5
desire 0.985 0.409 0.384 0.396 0.389 414 0.5
disappointment 0.961 0.300 0.198 0.239 0.224 1014 0.5
disapproval 0.945 0.293 0.195 0.234 0.212 1398 0.5
disgust 0.978 0.376 0.267 0.312 0.306 600 0.5
embarrassment 0.991 0.392 0.333 0.360 0.357 240 0.5
excitement 0.977 0.348 0.204 0.257 0.255 624 0.5
fear 0.986 0.547 0.468 0.504 0.499 498 0.5
gratitude 0.988 0.925 0.879 0.902 0.896 2004 0.5
grief 0.999 0.400 0.278 0.328 0.333 36 0.5
joy 0.966 0.451 0.367 0.405 0.389 1032 0.5
love 0.971 0.742 0.747 0.744 0.729 1812 0.5
nervousness 0.996 0.382 0.283 0.325 0.327 120 0.5
optimism 0.971 0.583 0.413 0.484 0.477 1062 0.5
pride 0.997 0.500 0.190 0.276 0.308 84 0.5
realization 0.971 0.270 0.124 0.170 0.169 792 0.5
relief 0.995 0.125 0.029 0.047 0.058 138 0.5
remorse 0.988 0.644 0.560 0.599 0.594 516 0.5
sadness 0.968 0.512 0.408 0.454 0.441 1062 0.5
surprise 0.974 0.492 0.430 0.459 0.447 828 0.5
neutral 0.742 0.648 0.440 0.524 0.368 10524 0.5
Downloads last month
33
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for AnasAlokla/multilingual_go_emotions_V1.1

Dataset used to train AnasAlokla/multilingual_go_emotions_V1.1

Space using AnasAlokla/multilingual_go_emotions_V1.1 1