๐ŸŒ Multilingual GoEmotions Classifier ๐Ÿ’ฌ

Dataset Languages Task Base Model

Table of Contents

Overview

This repository contains a powerful multilingual, multi-label emotion classification model. It is fine-tuned from the robust bert-base-multilingual-cased model on the comprehensive multilingual_go_emotions dataset. The model is designed to analyze text and identify a wide spectrum of 27 different emotions, plus a neutral category. Its ability to detect multiple emotions simultaneously makes it highly effective for understanding nuanced text from diverse sources.

  • Model Name: AnasAlokla/multilingual_go_emotions
  • Architecture: BERT (bert-base-multilingual-cased)
  • Task: Multi-Label Text Classification
  • Languages: Arabic, English, French, Spanish, Dutch, Turkish

Key Features

  • ๐ŸŒ Truly Multilingual: Natively supports 6 major languages, making it ideal for global applications.
  • ๐Ÿท๏ธ Multi-Label Classification: Capable of detecting multiple emotions in a single piece of text, capturing complex emotional expressions.
  • ๐Ÿ’ช High Performance: Built on bert-base-multilingual-cased, delivering strong results across all supported languages and emotions. See the detailed evaluation metrics.
  • ๐Ÿ”— Open & Accessible: Comes with a live demo, the full dataset, and the complete training code for full transparency and reproducibility.
  • V1.1 Improved Version: An updated model is available that specifically improves performance on low-frequency emotion samples.

Supported Emotions

The model is trained to classify text into 27 distinct emotion categories as well as a neutral class:

Emotion Emoji Emotion Emoji
Admiration ๐Ÿคฉ Love โค๏ธ
Amusement ๐Ÿ˜„ Nervousness ๐Ÿ˜ฐ
Anger ๐Ÿ˜  Optimism โœจ
Annoyance ๐Ÿ™„ Pride ๐Ÿ‘‘
Approval ๐Ÿ‘ Realization ๐Ÿ’ก
Caring ๐Ÿค— Relief ๐Ÿ˜Œ
Confusion ๐Ÿ˜• Remorse ๐Ÿ˜”
Curiosity ๐Ÿค” Sadness ๐Ÿ˜ข
Desire ๐Ÿ”ฅ Surprise ๐Ÿ˜ฒ
Disappointment ๐Ÿ˜ž Disapproval ๐Ÿ‘Ž
Disgust ๐Ÿคข Gratitude ๐Ÿ™
Embarrassment ๐Ÿ˜ณ Grief ๐Ÿ˜ญ
Excitement ๐ŸŽ‰ Joy ๐Ÿ˜Š
Fear ๐Ÿ˜ฑ Neutral ๐Ÿ˜

Links

Installation

Install the required libraries using pip:

pip install transformers torch

Quickstart: Emotion Detection

You can easily use this model for multi-label emotion classification with the transformers pipeline. Set top_k=None to see all predicted emotions above the model's default threshold.

from transformers import pipeline

# Load the multilingual, multi-label emotion classification pipeline
emotion_classifier = pipeline(
    "text-classification",
    model="AnasAlokla/multilingual_go_emotions",
    top_k=None # To return all scores for each label
)

# --- Example 1: English ---
text_en = "I'm so happy for you, but I'm also a little bit sad to see you go."
results_en = emotion_classifier(text_en)
print(f"Text (EN): {text_en}")
print(f"Predictions: {results_en}\n")

# --- Example 2: Spanish ---
text_es = "ยกQuรฉ sorpresa! No me lo esperaba para nada."
results_es = emotion_classifier(text_es)
print(f"Text (ES): {text_es}")
print(f"Predictions: {results_es}\n")

# --- Example 3: Arabic ---
text_ar = "ุฃุดุนุฑ ุจุฎูŠุจุฉ ุฃู…ู„ ูˆุบุถุจ ุจุณุจุจ ู…ุง ุญุฏุซ"
results_ar = emotion_classifier(text_ar)
print(f"Text (AR): {text_ar}")
print(f"Predictions: {results_ar}")

Expected Output (structure):

Text (EN): I'm so happy for you, but I'm also a little bit sad to see you go. Predictions: [[{'label': 'joy', 'score': 0.9...}, {'label': 'sadness', 'score': 0.8...}, {'label': 'caring', 'score': 0.5...}, ...]]

Text (ES): ยกQuรฉ sorpresa! No me lo esperaba para nada. Predictions: [[{'label': 'surprise', 'score': 0.9...}, {'label': 'excitement', 'score': 0.4...}, ...]]

Text (AR): ุฃุดุนุฑ ุจุฎูŠุจุฉ ุฃู…ู„ ูˆุบุถุจ ุจุณุจุจ ู…ุง ุญุฏุซ Predictions: [[{'label': 'disappointment', 'score': 0.9...}, {'label': 'anger', 'score': 0.9...}, ...]]

Evaluation

The model's performance was rigorously evaluated on the test set.

Test Set Performance

The following table shows the performance metrics of the fine-tuned model on the test set, broken down by emotion category.

index accuracy precision recall f1 mcc support threshold
admiration 0.942 0.652 0.684 0.667 0.636 2790 0.4
amusement 0.973 0.735 0.817 0.774 0.76 1866 0.35
anger 0.96 0.411 0.364 0.386 0.366 1128 0.35
annoyance 0.896 0.246 0.481 0.325 0.293 1704 0.15
approval 0.91 0.329 0.383 0.354 0.307 2094 0.2
caring 0.958 0.285 0.46 0.352 0.341 816 0.15
confusion 0.965 0.444 0.401 0.421 0.404 1020 0.25
curiosity 0.935 0.433 0.74 0.546 0.535 1734 0.25
desire 0.984 0.404 0.534 0.46 0.457 414 0.25
disappointment 0.942 0.224 0.345 0.272 0.249 1014 0.15
disapproval 0.935 0.306 0.413 0.352 0.322 1398 0.25
disgust 0.975 0.343 0.418 0.377 0.366 600 0.15
embarrassment 0.99 0.28 0.242 0.26 0.255 240 0.1
excitement 0.973 0.344 0.425 0.38 0.369 624 0.15
fear 0.987 0.599 0.522 0.558 0.553 498 0.35
gratitude 0.989 0.924 0.902 0.913 0.907 2004 0.4
grief 0.999 0 0 0 0 36 0.05
joy 0.965 0.454 0.532 0.49 0.474 1032 0.25
love 0.973 0.731 0.829 0.777 0.765 1812 0.35
nervousness 0.996 0.385 0.25 0.303 0.308 120 0.1
optimism 0.973 0.588 0.525 0.555 0.542 1062 0.25
pride 0.997 0 0 0 0 84 0.05
realization 0.962 0.202 0.189 0.195 0.176 792 0.15
relief 0.996 0 0 0 0 138 0.05
remorse 0.988 0.597 0.808 0.687 0.689 516 0.15
sadness 0.97 0.548 0.434 0.484 0.473 1062 0.4
surprise 0.974 0.487 0.569 0.524 0.513 828 0.3
neutral 0.726 0.551 0.818 0.658 0.468 10524 0.2

Use Cases

This model is ideal for applications requiring nuanced emotional understanding across different languages:

Global Customer Feedback Analysis: Analyze customer reviews, support tickets, and survey responses from around the world to gauge sentiment.

Multilingual Social Media Monitoring: Track brand perception and public mood across different regions and languages.

Advanced Chatbot Development: Build more empathetic and responsive chatbots that can understand user emotions in their native language.

Content Moderation: Automatically flag toxic, aggressive, or sensitive content on international platforms.

Market Research: Gain insights into how different cultures express emotions in text.

Trained On

Base Model: google-bert/bert-base-multilingual-cased - A powerful pretrained model supporting 104 languages.

Dataset: multilingual_go_emotions - A carefully translated and curated dataset for multilingual emotion analysis, based on the original Google GoEmotions dataset.

Fine-Tuning Guide

To adapt this model for your own dataset or to replicate the training process, you can follow the methodology outlined in the official code repository. The repository provides a complete, end-to-end example, including data preprocessing, training scripts, and evaluation logic.

For full details, please refer to the GitHub repository: emotion_chatbot

The following plots visualize the model's performance during the fine-tuning process across epochs.

Loss Curves (Training vs. Validation)

alt text

Accuracy Curves (Training vs. Validation)

alt text

F1 Score Curves (Training vs. Validation)

alt text

Tags

#multilingual-nlp #emotion-classification #text-classification #multi-label #bert #transformer #natural-language-processing #sentiment-analysis #deep-learning #arabic-nlp #french-nlp #spanish-nlp #goemotions #BERT-Emotion #edge-nlp #emotion-detection #offline-nlp
#sentiment-analysis #emojis #emotions #embedded-nlp #ai-for-iot #efficient-bert #nlp2025 #context-aware #edge-ml
#smart-home-ai #emotion-aware #voice-ai #eco-ai #chatbot #social-media
#mental-health #short-text #smart-replies #tone-analysis

Support & Contact

For questions, bug reports, or collaboration inquiries, please open an issue on the Hugging Face Hub repository or contact the author directly.

Author: Anas Hamid Alokla

๐Ÿ“ฌ Email: [email protected]

Downloads last month
2,695
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ 1 Ask for provider support

Model tree for AnasAlokla/multilingual_go_emotions

Finetuned
(749)
this model
Finetunes
1 model

Dataset used to train AnasAlokla/multilingual_go_emotions

Space using AnasAlokla/multilingual_go_emotions 1