Alsman68's picture
End of training
3da1f49 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - Alsman68/CapstoneDataset1
metrics:
  - wer
model-index:
  - name: capstone-whisper-our-data-only
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Simulated Aviation Audio For Capstone
          type: Alsman68/CapstoneDataset1
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 52.44755244755245

capstone-whisper-our-data-only

This model is a fine-tuned version of openai/whisper-medium on the Simulated Aviation Audio For Capstone dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9014
  • Wer: 52.4476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0001 71.4286 1000 1.6081 53.1469
0.0001 142.8571 2000 1.7786 52.6383
0.0 214.2857 3000 1.8591 52.3204
0.0 285.7143 4000 1.9014 52.4476

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1