--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - Alsman68/CapstoneDataset1 metrics: - wer model-index: - name: capstone-whisper-our-data-only results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Simulated Aviation Audio For Capstone type: Alsman68/CapstoneDataset1 args: 'config: en, split: test' metrics: - name: Wer type: wer value: 52.44755244755245 --- # capstone-whisper-our-data-only This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Simulated Aviation Audio For Capstone dataset. It achieves the following results on the evaluation set: - Loss: 1.9014 - Wer: 52.4476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0001 | 71.4286 | 1000 | 1.6081 | 53.1469 | | 0.0001 | 142.8571 | 2000 | 1.7786 | 52.6383 | | 0.0 | 214.2857 | 3000 | 1.8591 | 52.3204 | | 0.0 | 285.7143 | 4000 | 1.9014 | 52.4476 | ### Framework versions - Transformers 4.50.1 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1