AngelPanizo's picture
Add BERTopic model
dbe5ac2 verified
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# MARTINI_enrich_BERTopic_zmoniuziniasklaida
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_zmoniuziniasklaida")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 3
* Number of training documents: 131
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | profilaktikos - vakcina - ukrainos - mobilizacijos - uzkreciamuju | 20 | -1_profilaktikos_vakcina_ukrainos_mobilizacijos |
| 0 | vakcinacija - revakcinacijos - koronaviruso - testavimas - 152 | 82 | 0_vakcinacija_revakcinacijos_koronaviruso_testavimas |
| 1 | lietuviu - statuto - demokratu - investicijas - preliminariasias | 29 | 1_lietuviu_statuto_demokratu_investicijas |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.5.2
* Sentence-transformers: 3.3.1
* Transformers: 4.46.3
* Numba: 0.60.0
* Plotly: 5.24.1
* Python: 3.10.12