--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_zmoniuziniasklaida This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_zmoniuziniasklaida") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 3 * Number of training documents: 131
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | profilaktikos - vakcina - ukrainos - mobilizacijos - uzkreciamuju | 20 | -1_profilaktikos_vakcina_ukrainos_mobilizacijos | | 0 | vakcinacija - revakcinacijos - koronaviruso - testavimas - 152 | 82 | 0_vakcinacija_revakcinacijos_koronaviruso_testavimas | | 1 | lietuviu - statuto - demokratu - investicijas - preliminariasias | 29 | 1_lietuviu_statuto_demokratu_investicijas |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12