zypchn's picture
End of training
60a4e06 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-small-patch4-window7-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - f1
model-index:
  - name: swin-small-patch4-window7-224
    results: []

swin-small-patch4-window7-224

This model is a fine-tuned version of microsoft/swin-small-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1892
  • Accuracy: 0.9778
  • Precision: 0.9804
  • Sensitivity: 1.0
  • Specificity: 0.9733
  • F1: 0.9783
  • Auc: 0.9909
  • Mcc: 0.9267
  • J Stat: 0.9733
  • Confusion Matrix: [[146, 4], [0, 30]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.068420130106194e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06206076180207542
  • num_epochs: 10
  • label_smoothing_factor: 0.06417838785936565

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Sensitivity Specificity F1 Auc Mcc J Stat Confusion Matrix
No log 1.0 47 0.2904 0.9228 0.9256 0.7333 0.9892 0.9191 0.9754 0.7944 0.7225 [[1100, 12], [104, 286]]
0.4216 2.0 94 0.2247 0.9634 0.9640 0.8769 0.9937 0.9627 0.9866 0.9038 0.8706 [[1105, 7], [48, 342]]
0.2859 3.0 141 0.2064 0.9800 0.9800 0.9410 0.9937 0.9799 0.9914 0.9477 0.9347 [[1105, 7], [23, 367]]
0.2231 4.0 188 0.1778 0.9847 0.9847 0.9513 0.9964 0.9846 0.9956 0.9600 0.9477 [[1108, 4], [19, 371]]
0.1986 5.0 235 0.1590 0.9933 0.9933 0.9872 0.9955 0.9933 0.9982 0.9827 0.9827 [[1107, 5], [5, 385]]
0.174 6.0 282 0.1484 0.9973 0.9973 0.9923 0.9991 0.9973 0.9995 0.9931 0.9914 [[1111, 1], [3, 387]]
0.1526 7.0 329 0.1469 0.9980 0.9980 0.9949 0.9991 0.9980 0.9999 0.9948 0.9940 [[1111, 1], [2, 388]]
0.1518 8.0 376 0.1461 0.9987 0.9987 0.9949 1.0 0.9987 0.9997 0.9965 0.9949 [[1112, 0], [2, 388]]
0.148 9.0 423 0.1459 0.9987 0.9987 0.9949 1.0 0.9987 1.0000 0.9965 0.9949 [[1112, 0], [2, 388]]
0.1496 10.0 470 0.1458 0.9987 0.9987 0.9949 1.0 0.9987 1.0000 0.9965 0.9949 [[1112, 0], [2, 388]]

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.2