sd3-lora-training-rank32
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.
The main validation prompt used during training was:
ethnographic photography of teddy bear at a picnic
Validation settings
- CFG:
4.0
- CFG Rescale:
0.0
- Steps:
30
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 16
- Training steps: 600
- Learning rate: 8e-07
- Effective batch size: 2
- Micro-batch size: 1
- Gradient accumulation steps: 2
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: bf16
- Quantised: No
- Xformers: Not used
- LoRA Rank: 32
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
Pal
- Repeats: 0
- Total number of images: 73
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_id = 'zwloong/sd3-lora-training-rank32'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "ethnographic photography of teddy bear at a picnic"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=4.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 12