bart-cnn-pubhealth-expanded

This model is a fine-tuned version of facebook/bart-large-cnn on the clupubhealth dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7286
  • Rouge1: 28.3745
  • Rouge2: 8.806
  • Rougel: 19.3896
  • Rougelsum: 20.7149
  • Gen Len: 66.075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.571 0.26 500 2.2030 29.8543 10.1926 20.7137 21.7285 66.6
2.313 0.51 1000 2.1891 29.5708 9.5292 20.0823 21.4907 66.87
2.1371 0.77 1500 2.1981 29.7651 9.4575 20.412 21.2983 65.925
1.9488 1.03 2000 2.3023 29.6158 9.4241 20.6193 21.5966 64.745
1.7406 1.29 2500 2.2808 30.0862 9.8179 20.5477 21.4372 65.17
1.6732 1.54 3000 2.2953 29.65 9.693 20.3996 21.1837 64.48
1.6349 1.8 3500 2.3093 29.9081 9.4101 20.2955 21.381 64.605
1.4981 2.06 4000 2.3376 29.3183 9.2161 20.4919 21.3562 64.73
1.3951 2.32 4500 2.3323 29.9405 9.118 19.9364 21.1458 66.425
1.3775 2.57 5000 2.3597 29.1785 8.7657 19.6031 20.6261 65.505
1.3426 2.83 5500 2.3744 29.1015 8.9953 20.0223 21.1623 64.99
1.2243 3.09 6000 2.4723 28.8329 8.8603 19.9412 21.0484 65.655
1.1798 3.35 6500 2.4063 28.9035 8.9915 19.8531 20.9957 65.93
1.1926 3.6 7000 2.4110 29.4024 8.8828 19.4321 20.763 65.9
1.1791 3.86 7500 2.4147 29.8599 9.168 20.2613 21.4986 65.205
1.0545 4.12 8000 2.4941 27.9696 8.1513 19.5133 20.2316 65.26
1.0513 4.37 8500 2.4345 28.8695 8.7627 19.8116 20.8412 64.375
1.0516 4.63 9000 2.4550 29.3524 9.1717 20.0134 21.1516 65.59
1.0454 4.89 9500 2.4543 29.0709 8.8377 19.9499 20.9215 66.055
0.9247 5.15 10000 2.5152 28.8769 8.7619 19.5535 20.5383 65.455
0.9529 5.4 10500 2.5192 29.4734 8.6629 19.6803 20.9521 66.855
0.953 5.66 11000 2.5530 28.7234 8.5991 19.235 20.3965 64.62
0.9519 5.92 11500 2.5024 28.8013 8.8198 19.091 20.2732 65.16
0.8492 6.18 12000 2.6300 28.8821 8.974 20.1383 21.1273 66.16
0.8705 6.43 12500 2.6192 28.9942 9.0923 20.0151 20.9462 66.17
0.8489 6.69 13000 2.5758 28.5162 8.7087 19.6472 20.6057 68.725
0.8853 6.95 13500 2.5783 29.0936 8.8353 19.8755 20.867 65.61
0.8043 7.21 14000 2.6668 28.198 8.5221 19.2404 20.4359 66.84
0.8004 7.46 14500 2.6676 28.4951 8.8535 19.8777 20.8867 65.99
0.8067 7.72 15000 2.6136 29.2442 8.8243 19.7428 20.9531 66.265
0.8008 7.98 15500 2.6362 28.9875 8.8529 19.6993 20.6463 65.83
0.7499 8.23 16000 2.6987 29.2742 9.0804 19.8464 21.0735 65.66
0.7556 8.49 16500 2.6859 28.5046 8.3465 19.0813 20.2561 65.31
0.7574 8.75 17000 2.7021 29.2861 8.8262 19.5899 20.9786 65.735
0.7524 9.01 17500 2.7160 29.1471 8.9296 20.0009 21.2013 66.415
0.7124 9.26 18000 2.7418 28.8323 8.7672 19.5686 20.5814 67.355
0.7084 9.52 18500 2.7267 28.3833 8.7165 19.0514 20.3386 67.075
0.7251 9.78 19000 2.7286 28.3745 8.806 19.3896 20.7149 66.075

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zwellington/bart-cnn-pubhealth-expanded

Finetuned
(313)
this model

Evaluation results