whisper-large-v3-turbo-ivrit-ai-coursera-fine-tuned
This model is a fine-tuned version of ivrit-ai/whisper-large-v3-turbo on the dataset imvladikon/hebrew_speech_coursera. It achieves the following results on the evaluation set:
- Loss: 0.2829
Model description
This model created for my work for the Open University Of Israel. Here you can see the notebook that used to create this model, and here you can find me displaying the notebook. I think that this model is useless becaus it has lower performance from its base model.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1907 | 0.1641 | 500 | 0.2266 |
0.2283 | 0.3283 | 1000 | 0.2217 |
0.2253 | 0.4924 | 1500 | 0.2154 |
0.2257 | 0.6566 | 2000 | 0.2080 |
0.2138 | 0.8207 | 2500 | 0.2102 |
0.2153 | 0.9849 | 3000 | 0.2056 |
0.1615 | 1.1490 | 3500 | 0.2128 |
0.1588 | 1.3132 | 4000 | 0.1677 |
0.1628 | 1.4773 | 4500 | 0.1656 |
0.168 | 1.6415 | 5000 | 0.1798 |
0.167 | 1.8056 | 5500 | 0.1710 |
0.1663 | 1.9698 | 6000 | 0.1828 |
0.1297 | 2.1339 | 6500 | 0.1722 |
0.1196 | 2.2981 | 7000 | 0.1762 |
0.1336 | 2.4622 | 7500 | 0.1779 |
0.1258 | 2.6264 | 8000 | 0.1821 |
0.1275 | 2.7905 | 8500 | 0.1796 |
0.1331 | 2.9547 | 9000 | 0.1786 |
0.0988 | 3.1188 | 9500 | 0.1982 |
0.0933 | 3.2830 | 10000 | 0.1888 |
0.0963 | 3.4471 | 10500 | 0.1927 |
0.0946 | 3.6113 | 11000 | 0.1979 |
0.1018 | 3.7754 | 11500 | 0.2031 |
0.1027 | 3.9396 | 12000 | 0.1971 |
0.0795 | 4.1037 | 12500 | 0.2016 |
0.0698 | 4.2679 | 13000 | 0.2017 |
0.0736 | 4.4320 | 13500 | 0.2058 |
0.0747 | 4.5962 | 14000 | 0.2033 |
0.0768 | 4.7603 | 14500 | 0.2057 |
0.0801 | 4.9245 | 15000 | 0.2076 |
0.067 | 5.0886 | 15500 | 0.2196 |
0.0539 | 5.2528 | 16000 | 0.2185 |
0.0563 | 5.4169 | 16500 | 0.2220 |
0.0594 | 5.5811 | 17000 | 0.2265 |
0.0651 | 5.7452 | 17500 | 0.2176 |
0.0655 | 5.9094 | 18000 | 0.2227 |
0.0533 | 6.0735 | 18500 | 0.2387 |
0.0441 | 6.2377 | 19000 | 0.2334 |
0.0474 | 6.4018 | 19500 | 0.2343 |
0.0506 | 6.5660 | 20000 | 0.2387 |
0.0504 | 6.7301 | 20500 | 0.2373 |
0.0502 | 6.8943 | 21000 | 0.2318 |
0.0441 | 7.0584 | 21500 | 0.2524 |
0.0375 | 7.2226 | 22000 | 0.2533 |
0.0379 | 7.3867 | 22500 | 0.2491 |
0.0382 | 7.5509 | 23000 | 0.2635 |
0.0427 | 7.7150 | 23500 | 0.2506 |
0.0439 | 7.8792 | 24000 | 0.2430 |
0.043 | 8.0433 | 24500 | 0.2575 |
0.0296 | 8.2075 | 25000 | 0.2617 |
0.0309 | 8.3716 | 25500 | 0.2797 |
0.0366 | 8.5358 | 26000 | 0.2689 |
0.0351 | 8.6999 | 26500 | 0.2687 |
0.0384 | 8.8641 | 27000 | 0.2643 |
0.0365 | 9.0282 | 27500 | 0.2688 |
0.0265 | 9.1924 | 28000 | 0.2903 |
0.0299 | 9.3565 | 28500 | 0.2742 |
0.0347 | 9.5207 | 29000 | 0.2754 |
0.0311 | 9.6848 | 29500 | 0.2744 |
0.0345 | 9.8490 | 30000 | 0.2829 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 42
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for zibib/whisper-large-v3-turbo-ivrit-ai-coursera-fine-tuned
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo
Finetuned
ivrit-ai/whisper-large-v3-turbo