whisper-large-v3-turbo-ivrit-ai-coursera-fine-tuned

This model is a fine-tuned version of ivrit-ai/whisper-large-v3-turbo on the dataset imvladikon/hebrew_speech_coursera. It achieves the following results on the evaluation set:

  • Loss: 0.2829

Model description

This model created for my work for the Open University Of Israel. Here you can see the notebook that used to create this model, and here you can find me displaying the notebook. I think that this model is useless becaus it has lower performance from its base model.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.1907 0.1641 500 0.2266
0.2283 0.3283 1000 0.2217
0.2253 0.4924 1500 0.2154
0.2257 0.6566 2000 0.2080
0.2138 0.8207 2500 0.2102
0.2153 0.9849 3000 0.2056
0.1615 1.1490 3500 0.2128
0.1588 1.3132 4000 0.1677
0.1628 1.4773 4500 0.1656
0.168 1.6415 5000 0.1798
0.167 1.8056 5500 0.1710
0.1663 1.9698 6000 0.1828
0.1297 2.1339 6500 0.1722
0.1196 2.2981 7000 0.1762
0.1336 2.4622 7500 0.1779
0.1258 2.6264 8000 0.1821
0.1275 2.7905 8500 0.1796
0.1331 2.9547 9000 0.1786
0.0988 3.1188 9500 0.1982
0.0933 3.2830 10000 0.1888
0.0963 3.4471 10500 0.1927
0.0946 3.6113 11000 0.1979
0.1018 3.7754 11500 0.2031
0.1027 3.9396 12000 0.1971
0.0795 4.1037 12500 0.2016
0.0698 4.2679 13000 0.2017
0.0736 4.4320 13500 0.2058
0.0747 4.5962 14000 0.2033
0.0768 4.7603 14500 0.2057
0.0801 4.9245 15000 0.2076
0.067 5.0886 15500 0.2196
0.0539 5.2528 16000 0.2185
0.0563 5.4169 16500 0.2220
0.0594 5.5811 17000 0.2265
0.0651 5.7452 17500 0.2176
0.0655 5.9094 18000 0.2227
0.0533 6.0735 18500 0.2387
0.0441 6.2377 19000 0.2334
0.0474 6.4018 19500 0.2343
0.0506 6.5660 20000 0.2387
0.0504 6.7301 20500 0.2373
0.0502 6.8943 21000 0.2318
0.0441 7.0584 21500 0.2524
0.0375 7.2226 22000 0.2533
0.0379 7.3867 22500 0.2491
0.0382 7.5509 23000 0.2635
0.0427 7.7150 23500 0.2506
0.0439 7.8792 24000 0.2430
0.043 8.0433 24500 0.2575
0.0296 8.2075 25000 0.2617
0.0309 8.3716 25500 0.2797
0.0366 8.5358 26000 0.2689
0.0351 8.6999 26500 0.2687
0.0384 8.8641 27000 0.2643
0.0365 9.0282 27500 0.2688
0.0265 9.1924 28000 0.2903
0.0299 9.3565 28500 0.2742
0.0347 9.5207 29000 0.2754
0.0311 9.6848 29500 0.2744
0.0345 9.8490 30000 0.2829

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
42
Safetensors
Model size
809M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zibib/whisper-large-v3-turbo-ivrit-ai-coursera-fine-tuned

Finetuned
(1)
this model

Dataset used to train zibib/whisper-large-v3-turbo-ivrit-ai-coursera-fine-tuned