LoopTool: Closing the Data-Training Loop for Robust LLM Tool Calls
Paper
•
2511.09148
•
Published
•
17
The LoopTool-32B model is derived from iterative fine-tuning of Qwen3-32B, with a particular emphasis on enhancing the model’s capabilities in tool invocation.
The Main Result in BFCL-v3
| Overall | Non-Live | Live | Multi-Turn | |
|---|---|---|---|---|
| Qwen3-8B | 66.34 | 88.81 | 78.54 | 33.00 |
| LoopTool-8B | 74.93 | 89.52 | 84.72 | 50.88 |
| Qwen3-32B | 69.25 | 88.90 | 77.83 | 43.12 |
| LoopTool-32B | 79.32 | 91.83 | 88.58 | 57.75 |
The Main Result in ACEBench (English)
| Overall | Normal | Special | Agent | |
|---|---|---|---|---|
| Qwen3-8B | 67.1 | 70.9 | 78.0 | 34.2 |
| LoopTool-8B | 73.4 | 78.0 | 80.7 | 43.3 |
| Qwen3-32B | 72.2 | 77.3 | 76.0 | 46.7 |
| Kimi-K2-0711 | 77.4 | 78.9 | 81.3 | 65.0 |
| LoopTool-32B (OpenSource-1st) | 77.5 | 80.5 | 78.7 | 64.1 |
If you find our work helpful, feel free to give us a cite.
@misc{zhang2025looptool,
title={LoopTool: Closing the Data-Training Loop for Robust LLM Tool Calls},
author={Kangning Zhang and Wenxiang Jiao and Kounianhua Du and Yuan Lu and Weiwen Liu and Weinan Zhang and Lei Zhang and Yong Yu},
year={2025},
eprint={2511.09148},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2511.09148},
}