Llama3-Chinese / README_CN.md
zhichen's picture
add github
9e3e33a

中文  |  English



Llama3-Chinese


GitHub Contributors

介绍

Llama3-Chinese以Meta-Llama-3-8B为底座,使用 DORA + LORA+ 的训练方法,在50w高质量中文多轮SFT数据 + 10w英文多轮SFT数据 + 2000单轮自我认知数据训练而来的大模型。

Github: https://github.com/seanzhang-zhichen/llama3-chinese

DEMO

模型下载

Model Download
Meta-Llama-3-8B 🤗 HuggingFace 🤖 ModelScope
Llama3-Chinese-Lora 🤗 HuggingFace 🤖 ModelScope
Llama3-Chinese (合并好的模型) 🤗 HuggingFace 🤖 ModelScope

合并LORA模型(可跳过)

1、下载 Meta-Llama-3-8B

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B.git

2、下载Llama3-Chinese-Lora

From ModelScope

git lfs install
git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese-Lora.git

From HuggingFace

git lfs install
git clone https://huggingface.co/zhichen/Llama3-Chinese-Lora

3、合并模型

python merge_lora.py \
    --base_model path/to/Meta-Llama-3-8B \
    --lora_model path/to/lora/Llama3-Chinese-Lora  \
    --output_dir ./Llama3-Chinese

下载 Llama3-Chinese(合并好的模型)

From ModelScope

git lfs install
git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese.git

From HuggingFace

git lfs install
git clone https://huggingface.co/zhichen/Llama3-Chinese

推理

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "zhichen/Llama3-Chinese"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "你好"},
]

input_ids = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=2048,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

命令行推理

python cli_demo.py --model_path zhichen/Llama3-Chinese

web推理

python web_demo.py --model_path zhichen/Llama3-Chinese

vllm web 推理

1、使用vllm部署模型

python -m vllm.entrypoints.openai.api_server --served-model-name Llama3-Chinese --model ./Llama3-Chinese(换成你自己的合并后的模型路径)

2、在命令行执行

python vllm_web_demo.py --model Llama3-Chinese

训练数据集

匠数科技大模型sft数据集

LICENSE

本项目仅可应用于研究目的,项目开发者不承担任何因使用本项目(包含但不限于数据、模型、代码等)导致的危害或损失。详细请参考免责声明

Llama3-Chinese项目代码的授权协议为 The Apache License 2.0,代码可免费用做商业用途,模型权重和数据只能用于研究目的。请在产品说明中附加Llama3-Chinese的链接和授权协议。

Citation

如果你在研究中使用了Llama3-Chinese,请按如下格式引用:

@misc{Llama3-Chinese,
  title={Llama3-Chinese},
  author={Zhichen Zhang, Xin LU, Long Chen},
  year={2024},
  howpublished={\url{https://github.com/seanzhang-zhichen/llama3-chinese}},
}

Acknowledgement

meta-llama/llama3
hiyouga/LLaMA-Factory

Star History

Star History Chart