Edit model card

Visualize in Weights & Biases

phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.6123 0.2807 100 1.3855
1.3959 0.5614 200 1.3212
1.2889 0.8421 300 1.2876
1.332 1.1228 400 1.2582
1.2596 1.4035 500 1.2443
1.2424 1.6842 600 1.2284
1.1912 1.9649 700 1.2161
1.1686 2.2456 800 1.2123
1.2223 2.5263 900 1.2074
1.1395 2.8070 1000 1.2057

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
3.82B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for zhangdah/phi-3-mini-LoRA

Adapter
(285)
this model