bart-base-summarization-medical_on_cnn-44
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3974
- Rouge1: 0.2518
- Rouge2: 0.0939
- Rougel: 0.1991
- Rougelsum: 0.2234
- Gen Len: 18.193
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 44
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.703 | 1.0 | 1250 | 3.3758 | 0.2513 | 0.0906 | 0.197 | 0.222 | 18.892 |
2.6143 | 2.0 | 2500 | 3.3837 | 0.2497 | 0.0914 | 0.1956 | 0.2202 | 18.433 |
2.5745 | 3.0 | 3750 | 3.3914 | 0.2487 | 0.0908 | 0.195 | 0.2188 | 18.475 |
2.5622 | 4.0 | 5000 | 3.3947 | 0.2481 | 0.0909 | 0.1957 | 0.2192 | 18.307 |
2.5308 | 5.0 | 6250 | 3.4010 | 0.2512 | 0.0935 | 0.1994 | 0.2232 | 18.139 |
2.5395 | 6.0 | 7500 | 3.3974 | 0.2518 | 0.0939 | 0.1991 | 0.2234 | 18.193 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for zbigi/bart-base-summarization-medical_on_cnn-44
Base model
facebook/bart-base