bart-base-summarization-medical_on_cnn-43
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3867
- Rouge1: 0.2505
- Rouge2: 0.0917
- Rougel: 0.1982
- Rougelsum: 0.2221
- Gen Len: 18.509
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.7087 | 1.0 | 1250 | 3.3802 | 0.2509 | 0.0892 | 0.1958 | 0.221 | 19.092 |
2.615 | 2.0 | 2500 | 3.3801 | 0.249 | 0.0914 | 0.1958 | 0.22 | 18.594 |
2.5711 | 3.0 | 3750 | 3.3867 | 0.2514 | 0.0917 | 0.1969 | 0.2214 | 18.643 |
2.5534 | 4.0 | 5000 | 3.3886 | 0.252 | 0.0932 | 0.198 | 0.2223 | 18.467 |
2.5482 | 5.0 | 6250 | 3.3859 | 0.2508 | 0.0908 | 0.1972 | 0.2217 | 18.501 |
2.5367 | 6.0 | 7500 | 3.3867 | 0.2505 | 0.0917 | 0.1982 | 0.2221 | 18.509 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for zbigi/bart-base-summarization-medical_on_cnn-43
Base model
facebook/bart-base