Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fla/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/__pycache__/utils.cpython-311.pyc +0 -0
- fla/layers/__init__.py +44 -0
- fla/layers/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/layers/__pycache__/abc.cpython-311.pyc +0 -0
- fla/layers/__pycache__/attn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/based.cpython-311.pyc +0 -0
- fla/layers/__pycache__/bitattn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/delta_net.cpython-311.pyc +0 -0
- fla/layers/__pycache__/forgetting_attn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gated_deltanet.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gated_deltaproduct.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gla.cpython-311.pyc +0 -0
- fla/layers/__pycache__/gsa.cpython-311.pyc +0 -0
- fla/layers/__pycache__/hgrn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/hgrn2.cpython-311.pyc +0 -0
- fla/layers/__pycache__/lightnet.cpython-311.pyc +0 -0
- fla/layers/__pycache__/linear_attn.cpython-311.pyc +0 -0
- fla/layers/__pycache__/multiscale_retention.cpython-311.pyc +0 -0
- fla/layers/__pycache__/nsa.cpython-311.pyc +0 -0
- fla/layers/__pycache__/rebased.cpython-311.pyc +0 -0
- fla/layers/__pycache__/rwkv6.cpython-311.pyc +0 -0
- fla/layers/__pycache__/rwkv7.cpython-311.pyc +0 -0
- fla/layers/abc.py +218 -0
- fla/layers/attn.py +222 -0
- fla/layers/based.py +96 -0
- fla/layers/bitattn.py +192 -0
- fla/layers/delta_net.py +291 -0
- fla/layers/forgetting_attn.py +109 -0
- fla/layers/gated_deltanet.py +293 -0
- fla/layers/gated_deltaproduct.py +351 -0
- fla/layers/gsa.py +227 -0
- fla/layers/hgrn.py +168 -0
- fla/layers/hgrn2.py +211 -0
- fla/layers/lightnet.py +210 -0
- fla/layers/linear_attn.py +166 -0
- fla/layers/multiscale_retention.py +298 -0
- fla/layers/nsa.py +138 -0
- fla/layers/rebased.py +133 -0
- fla/layers/rwkv6.py +307 -0
- fla/layers/simple_gla.py +261 -0
- fla/ops/__init__.py +46 -0
- fla/ops/attn/__init__.py +17 -0
- fla/ops/attn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/attn/__pycache__/naive.cpython-311.pyc +0 -0
- fla/ops/attn/__pycache__/naive_rectified.cpython-311.pyc +0 -0
- fla/ops/attn/__pycache__/parallel.cpython-311.pyc +0 -0
- fla/ops/attn/naive.py +28 -0
- fla/ops/attn/naive_rectified.py +30 -0
- fla/ops/attn/naive_softpick.py +39 -0
fla/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (2.33 kB). View file
|
|
fla/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (13.8 kB). View file
|
|
fla/layers/__init__.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from .abc import ABCAttention
|
5 |
+
from .attn import Attention
|
6 |
+
from .based import BasedLinearAttention
|
7 |
+
from .bitattn import BitAttention
|
8 |
+
from .delta_net import DeltaNet
|
9 |
+
from .forgetting_attn import ForgettingAttention
|
10 |
+
from .gated_deltanet import GatedDeltaNet
|
11 |
+
from .gated_deltaproduct import GatedDeltaProduct
|
12 |
+
from .gla import GatedLinearAttention
|
13 |
+
from .gsa import GatedSlotAttention
|
14 |
+
from .hgrn import HGRNAttention
|
15 |
+
from .hgrn2 import HGRN2Attention
|
16 |
+
from .lightnet import LightNetAttention
|
17 |
+
from .linear_attn import LinearAttention
|
18 |
+
from .multiscale_retention import MultiScaleRetention
|
19 |
+
from .nsa import NativeSparseAttention
|
20 |
+
from .rebased import ReBasedLinearAttention
|
21 |
+
from .rwkv6 import RWKV6Attention
|
22 |
+
from .rwkv7 import RWKV7Attention
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'ABCAttention',
|
26 |
+
'Attention',
|
27 |
+
'BasedLinearAttention',
|
28 |
+
'BitAttention',
|
29 |
+
'DeltaNet',
|
30 |
+
'ForgettingAttention',
|
31 |
+
'GatedDeltaNet',
|
32 |
+
'GatedDeltaProduct',
|
33 |
+
'GatedLinearAttention',
|
34 |
+
'GatedSlotAttention',
|
35 |
+
'HGRNAttention',
|
36 |
+
'HGRN2Attention',
|
37 |
+
'LightNetAttention',
|
38 |
+
'LinearAttention',
|
39 |
+
'MultiScaleRetention',
|
40 |
+
'NativeSparseAttention',
|
41 |
+
'ReBasedLinearAttention',
|
42 |
+
'RWKV6Attention',
|
43 |
+
'RWKV7Attention',
|
44 |
+
]
|
fla/layers/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (1.5 kB). View file
|
|
fla/layers/__pycache__/abc.cpython-311.pyc
ADDED
Binary file (9.78 kB). View file
|
|
fla/layers/__pycache__/attn.cpython-311.pyc
ADDED
Binary file (11.5 kB). View file
|
|
fla/layers/__pycache__/based.cpython-311.pyc
ADDED
Binary file (6.91 kB). View file
|
|
fla/layers/__pycache__/bitattn.cpython-311.pyc
ADDED
Binary file (9.62 kB). View file
|
|
fla/layers/__pycache__/delta_net.cpython-311.pyc
ADDED
Binary file (13.1 kB). View file
|
|
fla/layers/__pycache__/forgetting_attn.cpython-311.pyc
ADDED
Binary file (5.47 kB). View file
|
|
fla/layers/__pycache__/gated_deltanet.cpython-311.pyc
ADDED
Binary file (13.9 kB). View file
|
|
fla/layers/__pycache__/gated_deltaproduct.cpython-311.pyc
ADDED
Binary file (16.3 kB). View file
|
|
fla/layers/__pycache__/gla.cpython-311.pyc
ADDED
Binary file (13.7 kB). View file
|
|
fla/layers/__pycache__/gsa.cpython-311.pyc
ADDED
Binary file (10.3 kB). View file
|
|
fla/layers/__pycache__/hgrn.cpython-311.pyc
ADDED
Binary file (7.23 kB). View file
|
|
fla/layers/__pycache__/hgrn2.cpython-311.pyc
ADDED
Binary file (9.09 kB). View file
|
|
fla/layers/__pycache__/lightnet.cpython-311.pyc
ADDED
Binary file (9.33 kB). View file
|
|
fla/layers/__pycache__/linear_attn.cpython-311.pyc
ADDED
Binary file (7.97 kB). View file
|
|
fla/layers/__pycache__/multiscale_retention.cpython-311.pyc
ADDED
Binary file (13 kB). View file
|
|
fla/layers/__pycache__/nsa.cpython-311.pyc
ADDED
Binary file (6.73 kB). View file
|
|
fla/layers/__pycache__/rebased.cpython-311.pyc
ADDED
Binary file (7.18 kB). View file
|
|
fla/layers/__pycache__/rwkv6.cpython-311.pyc
ADDED
Binary file (15.6 kB). View file
|
|
fla/layers/__pycache__/rwkv7.cpython-311.pyc
ADDED
Binary file (11 kB). View file
|
|
fla/layers/abc.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, RotaryEmbedding, ShortConvolution
|
14 |
+
from fla.modules.activations import swiglu, swish
|
15 |
+
from fla.ops.abc.chunk import chunk_abc
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from fla.models.utils import Cache
|
19 |
+
|
20 |
+
|
21 |
+
class ABCAttention(nn.Module):
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
hidden_size: int = 1024,
|
26 |
+
expand_k: float = 0.5,
|
27 |
+
expand_v: float = 1.0,
|
28 |
+
num_heads: int = 4,
|
29 |
+
use_short_conv: bool = False,
|
30 |
+
conv_size: int = 4,
|
31 |
+
conv_bias: bool = False,
|
32 |
+
num_slots: Optional[int] = None,
|
33 |
+
elementwise_affine: Optional[bool] = True,
|
34 |
+
norm_eps: float = 1e-5,
|
35 |
+
gate_low_rank_dim: int = 16,
|
36 |
+
gate_logit_normalizer: int = 16,
|
37 |
+
use_rope: bool = True,
|
38 |
+
use_input_gate: bool = False,
|
39 |
+
use_output_gate: bool = True,
|
40 |
+
use_norm: bool = True,
|
41 |
+
clamp_min: Optional[float] = -32,
|
42 |
+
clamp_max: Optional[float] = 32,
|
43 |
+
layer_idx: Optional[int] = None,
|
44 |
+
**kwargs
|
45 |
+
) -> ABCAttention:
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.expand_k = expand_k
|
50 |
+
self.expand_v = expand_v
|
51 |
+
self.num_heads = num_heads
|
52 |
+
self.key_dim = int(self.hidden_size * self.expand_k)
|
53 |
+
self.value_dim = int(self.hidden_size * self.expand_v)
|
54 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
55 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
56 |
+
|
57 |
+
self.use_short_conv = use_short_conv
|
58 |
+
self.conv_size = conv_size
|
59 |
+
self.conv_bias = conv_bias
|
60 |
+
|
61 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
62 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
63 |
+
|
64 |
+
self.use_rope = use_rope
|
65 |
+
self.use_input_gate = use_input_gate
|
66 |
+
self.use_output_gate = use_output_gate
|
67 |
+
self.use_norm = use_norm
|
68 |
+
|
69 |
+
if num_slots is None:
|
70 |
+
num_slots = self.head_k_dim
|
71 |
+
self.num_slots = num_slots
|
72 |
+
|
73 |
+
self.norm_eps = norm_eps
|
74 |
+
|
75 |
+
self.clamp_min = clamp_min
|
76 |
+
self.clamp_max = clamp_max
|
77 |
+
self.layer_idx = layer_idx
|
78 |
+
|
79 |
+
if layer_idx is None:
|
80 |
+
warnings.warn(
|
81 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
82 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
83 |
+
"when creating this class."
|
84 |
+
)
|
85 |
+
|
86 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
87 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
88 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
89 |
+
|
90 |
+
if use_output_gate:
|
91 |
+
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
92 |
+
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
|
93 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
94 |
+
|
95 |
+
if use_short_conv:
|
96 |
+
self.conv_size = conv_size
|
97 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
98 |
+
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
99 |
+
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
|
100 |
+
|
101 |
+
if self.use_norm:
|
102 |
+
if self.use_output_gate:
|
103 |
+
self.g_norm = FusedRMSNormGated(
|
104 |
+
hidden_size=self.head_v_dim,
|
105 |
+
elementwise_affine=elementwise_affine,
|
106 |
+
eps=norm_eps
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
self.g_norm = RMSNorm(
|
110 |
+
hidden_size=self.head_v_dim,
|
111 |
+
elementwise_affine=elementwise_affine,
|
112 |
+
eps=norm_eps
|
113 |
+
)
|
114 |
+
|
115 |
+
if self.use_rope:
|
116 |
+
self.rotary = RotaryEmbedding(self.head_k_dim)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self,
|
120 |
+
hidden_states: torch.Tensor,
|
121 |
+
attention_mask: Optional[torch.Tensor] = None,
|
122 |
+
past_key_values: Optional[Cache] = None,
|
123 |
+
use_cache: Optional[bool] = False,
|
124 |
+
output_attentions: Optional[bool] = False,
|
125 |
+
**kwargs
|
126 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
127 |
+
if attention_mask is not None:
|
128 |
+
assert len(attention_mask.shape) == 2, (
|
129 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
130 |
+
"for padding purposes (0 indicating padding). "
|
131 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
132 |
+
)
|
133 |
+
|
134 |
+
last_state = None
|
135 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
136 |
+
last_state = past_key_values[self.layer_idx]
|
137 |
+
|
138 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
139 |
+
if cu_seqlens is not None:
|
140 |
+
raise NotImplementedError("Training with cu_seqlens is not supported yet for ABCAttention")
|
141 |
+
if self.use_short_conv:
|
142 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
143 |
+
if last_state is not None:
|
144 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
145 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
146 |
+
q, conv_state_q = self.q_conv1d(
|
147 |
+
x=self.q_proj(hidden_states),
|
148 |
+
mask=conv_mask,
|
149 |
+
cache=conv_state_q,
|
150 |
+
output_final_state=use_cache,
|
151 |
+
cu_seqlens=cu_seqlens
|
152 |
+
)
|
153 |
+
k, conv_state_k = self.k_conv1d(
|
154 |
+
x=self.k_proj(hidden_states),
|
155 |
+
mask=conv_mask,
|
156 |
+
cache=conv_state_k,
|
157 |
+
output_final_state=use_cache,
|
158 |
+
cu_seqlens=cu_seqlens
|
159 |
+
)
|
160 |
+
v, conv_state_v = self.v_conv1d(
|
161 |
+
x=self.v_proj(hidden_states),
|
162 |
+
mask=conv_mask,
|
163 |
+
cache=conv_state_v,
|
164 |
+
output_final_state=use_cache,
|
165 |
+
cu_seqlens=cu_seqlens
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
q = self.q_proj(hidden_states)
|
169 |
+
k = self.k_proj(hidden_states)
|
170 |
+
v = self.v_proj(hidden_states)
|
171 |
+
|
172 |
+
if self.use_input_gate:
|
173 |
+
q, k, v = map(lambda x: swish(x), (q, k, v))
|
174 |
+
# dealing with left-padding
|
175 |
+
if attention_mask is not None:
|
176 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
177 |
+
|
178 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
179 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
180 |
+
if self.use_rope:
|
181 |
+
seqlen_offset = 0
|
182 |
+
if past_key_values is not None:
|
183 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
184 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset)
|
185 |
+
|
186 |
+
s = rearrange(self.s_proj(hidden_states), '... (h m) -> ... h m', m=self.num_slots)
|
187 |
+
s = s.clamp_(self.clamp_min, self.clamp_max)
|
188 |
+
|
189 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
190 |
+
o, recurrent_state = chunk_abc(
|
191 |
+
q=q,
|
192 |
+
k=k,
|
193 |
+
v=v,
|
194 |
+
s=s,
|
195 |
+
initial_state=recurrent_state,
|
196 |
+
output_final_state=use_cache,
|
197 |
+
head_first=False
|
198 |
+
)
|
199 |
+
if past_key_values is not None:
|
200 |
+
past_key_values.update(
|
201 |
+
recurrent_state=recurrent_state,
|
202 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
203 |
+
layer_idx=self.layer_idx,
|
204 |
+
offset=q.shape[1]
|
205 |
+
)
|
206 |
+
|
207 |
+
if self.use_norm and not self.use_output_gate:
|
208 |
+
o = self.g_norm(o)
|
209 |
+
elif self.use_output_gate:
|
210 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
211 |
+
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
|
212 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
213 |
+
o = self.o_proj(o)
|
214 |
+
|
215 |
+
return o, None, past_key_values
|
216 |
+
|
217 |
+
def state_size(self, seq_len: int = 2048):
|
218 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/attn.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from einops import rearrange
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
from fla.modules import RMSNorm, RotaryEmbedding
|
17 |
+
from fla.ops import parallel_attn, parallel_rectified_attn, parallel_softpick_attn, naive_attn, naive_rectified_attn, naive_softpick_attn
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
24 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
25 |
+
except ImportError:
|
26 |
+
warnings.warn(
|
27 |
+
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
|
28 |
+
category=ImportWarning
|
29 |
+
)
|
30 |
+
flash_attn_func = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class Attention(nn.Module):
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
hidden_size: int = 2048,
|
40 |
+
num_heads: int = 32,
|
41 |
+
num_kv_heads: Optional[int] = None,
|
42 |
+
qkv_bias: bool = False,
|
43 |
+
qk_norm: bool = False,
|
44 |
+
window_size: Optional[int] = None,
|
45 |
+
rope_theta: Optional[float] = 10000.,
|
46 |
+
max_position_embeddings: Optional[int] = None,
|
47 |
+
layer_idx: int = None,
|
48 |
+
attn_impl: str = "flash_attn",
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.hidden_size = hidden_size
|
53 |
+
self.num_heads = num_heads
|
54 |
+
if num_kv_heads is None:
|
55 |
+
self.num_kv_heads = self.num_heads
|
56 |
+
else:
|
57 |
+
self.num_kv_heads = num_kv_heads
|
58 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
59 |
+
self.head_dim = self.hidden_size // self.num_heads
|
60 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
61 |
+
self.qkv_bias = qkv_bias
|
62 |
+
self.qk_norm = qk_norm
|
63 |
+
|
64 |
+
self.window_size = window_size
|
65 |
+
self.rope_theta = rope_theta
|
66 |
+
self.max_position_embeddings = max_position_embeddings
|
67 |
+
self.layer_idx = layer_idx
|
68 |
+
self.attn_impl = attn_impl
|
69 |
+
|
70 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias)
|
71 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
72 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
73 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
74 |
+
|
75 |
+
if qk_norm:
|
76 |
+
self.q_norm = RMSNorm(self.head_dim)
|
77 |
+
self.k_norm = RMSNorm(self.head_dim)
|
78 |
+
|
79 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
80 |
+
|
81 |
+
def forward(
|
82 |
+
self,
|
83 |
+
hidden_states: torch.Tensor,
|
84 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
85 |
+
past_key_values: Optional[Cache] = None,
|
86 |
+
output_attentions: bool = False,
|
87 |
+
use_cache: bool = False,
|
88 |
+
**kwargs,
|
89 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
90 |
+
if attention_mask is not None:
|
91 |
+
assert len(attention_mask.shape) == 2, (
|
92 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
93 |
+
"for padding purposes (0 indicating padding). "
|
94 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
95 |
+
)
|
96 |
+
|
97 |
+
batch_size, q_len, _ = hidden_states.size()
|
98 |
+
|
99 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
100 |
+
|
101 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
102 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
103 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
104 |
+
|
105 |
+
if self.qk_norm:
|
106 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
107 |
+
|
108 |
+
# equivalent to cu_seqlens in `flash_attn`
|
109 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
110 |
+
|
111 |
+
seqlen_offset, max_seqlen = 0, q_len
|
112 |
+
if past_key_values is not None:
|
113 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
114 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
115 |
+
|
116 |
+
if attention_mask is not None:
|
117 |
+
# to deliminate the offsets of padding tokens
|
118 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
119 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
120 |
+
|
121 |
+
if self.max_position_embeddings is not None:
|
122 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
123 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
124 |
+
|
125 |
+
if past_key_values is not None:
|
126 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
127 |
+
k_cached, v_cached = past_key_values.update(
|
128 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
129 |
+
layer_idx=self.layer_idx,
|
130 |
+
offset=q_len,
|
131 |
+
cache_kwargs=dict(window_size=self.window_size)
|
132 |
+
)['attn_state']
|
133 |
+
if cache_has_content:
|
134 |
+
k, v = k_cached, v_cached
|
135 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
136 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
137 |
+
|
138 |
+
if flash_attn_func is None:
|
139 |
+
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
140 |
+
|
141 |
+
# Contains at least one padding token in the sequence
|
142 |
+
if self.attn_impl == "flash_attn":
|
143 |
+
if attention_mask is not None:
|
144 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
145 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
146 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
147 |
+
o = flash_attn_varlen_func(
|
148 |
+
q, k, v,
|
149 |
+
cu_seqlens_q=cu_seqlens_q,
|
150 |
+
cu_seqlens_k=cu_seqlens_k,
|
151 |
+
max_seqlen_q=max_seqlen_q,
|
152 |
+
max_seqlen_k=max_seqlen_k,
|
153 |
+
causal=True,
|
154 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
155 |
+
)
|
156 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
157 |
+
elif cu_seqlens is not None:
|
158 |
+
o = flash_attn_varlen_func(
|
159 |
+
q.squeeze(0), k.squeeze(0), v.squeeze(0),
|
160 |
+
cu_seqlens_q=cu_seqlens,
|
161 |
+
cu_seqlens_k=cu_seqlens,
|
162 |
+
max_seqlen_q=max_seqlen,
|
163 |
+
max_seqlen_k=max_seqlen,
|
164 |
+
causal=True,
|
165 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
166 |
+
).unsqueeze(0)
|
167 |
+
else:
|
168 |
+
o = flash_attn_func(
|
169 |
+
q, k, v,
|
170 |
+
causal=True,
|
171 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
172 |
+
)
|
173 |
+
elif self.attn_impl == "parallel_attn":
|
174 |
+
o = parallel_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
175 |
+
elif self.attn_impl == "parallel_rectified_attn":
|
176 |
+
o = parallel_rectified_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
177 |
+
elif self.attn_impl == "parallel_softpick_attn":
|
178 |
+
o = parallel_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
179 |
+
elif self.attn_impl == "naive_attn":
|
180 |
+
o, attentions = naive_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
181 |
+
elif self.attn_impl == "naive_rectified_attn":
|
182 |
+
o, attentions = naive_rectified_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
183 |
+
elif self.attn_impl == "naive_softpick_attn":
|
184 |
+
o, attentions = naive_softpick_attn(q, k, v, scale=self.head_dim**-0.5, cu_seqlens=cu_seqlens)
|
185 |
+
else:
|
186 |
+
raise ValueError(f"Unknown attention implementation: {self.attn_impl}")
|
187 |
+
|
188 |
+
o = o.reshape(batch_size, q_len, -1)
|
189 |
+
o = self.o_proj(o)
|
190 |
+
|
191 |
+
if not output_attentions or "parallel" in self.attn_impl or "flash" in self.attn_impl:
|
192 |
+
attentions = None
|
193 |
+
|
194 |
+
return o, attentions, past_key_values
|
195 |
+
|
196 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
197 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
198 |
+
cache_mask = attention_mask[:, -seq_len:]
|
199 |
+
seqlens = cache_mask.sum(-1, dtype=torch.int32)
|
200 |
+
indices_k = torch.nonzero(cache_mask.flatten(), as_tuple=False).flatten()
|
201 |
+
max_seqlen_k = seqlens.max().item()
|
202 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
203 |
+
|
204 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
205 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
206 |
+
if q_len == seq_len:
|
207 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
208 |
+
cu_seqlens_q = cu_seqlens_k
|
209 |
+
max_seqlen_q = max_seqlen_k
|
210 |
+
indices_q = indices_k
|
211 |
+
elif q_len == 1:
|
212 |
+
max_seqlen_q = 1
|
213 |
+
# There is a memcpy here, that is very bad.
|
214 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
215 |
+
indices_q = cu_seqlens_q[:-1]
|
216 |
+
q = q.squeeze(1)
|
217 |
+
else:
|
218 |
+
# The -q_len: slice assumes left padding.
|
219 |
+
attention_mask = attention_mask[:, -q_len:]
|
220 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
221 |
+
|
222 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
fla/layers/based.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
Linear attention in Based.
|
6 |
+
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from fla.modules.feature_map import TaylorFeatureMap
|
14 |
+
from fla.ops.based import parallel_based
|
15 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
16 |
+
|
17 |
+
|
18 |
+
class BasedLinearAttention(nn.Module):
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
hidden_size: int,
|
23 |
+
feature_dim: int = 16,
|
24 |
+
num_key_value_heads: int = 12,
|
25 |
+
num_heads: int = 12,
|
26 |
+
feature_name: str = "taylor_exp",
|
27 |
+
eps: float = 1e-12,
|
28 |
+
causal: bool = True,
|
29 |
+
mode: str = "parallel",
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.mode = mode
|
35 |
+
self.feature_name = feature_name
|
36 |
+
self.feature_dim = feature_dim
|
37 |
+
self.num_key_value_heads = num_key_value_heads
|
38 |
+
self.num_heads = num_heads
|
39 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
40 |
+
assert self.hidden_size % self.head_dim == 0
|
41 |
+
self.causal = causal
|
42 |
+
|
43 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
44 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
45 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
46 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
47 |
+
self.dropout = nn.Identity()
|
48 |
+
self.feature_map = TaylorFeatureMap(feature_dim)
|
49 |
+
self.eps = eps
|
50 |
+
|
51 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
52 |
+
mode = self.mode
|
53 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
54 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", d=self.head_dim), [q, k, v])
|
55 |
+
if mode == "fused_chunk":
|
56 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
57 |
+
o, _ = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
58 |
+
elif mode == 'chunk':
|
59 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
60 |
+
o, _ = chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
61 |
+
elif mode == 'parallel':
|
62 |
+
assert q.shape[-1] <= 128
|
63 |
+
o = parallel_based(q, k, v, scale=1, use_norm=True, head_first=False)
|
64 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
65 |
+
o = self.o_proj(o)
|
66 |
+
o = self.dropout(o)
|
67 |
+
return o
|
68 |
+
|
69 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
70 |
+
|
71 |
+
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
72 |
+
"""
|
73 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
74 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
75 |
+
"""
|
76 |
+
# hidden_states = hidden_states.transpose(1, 2)
|
77 |
+
b, t, _ = hidden_states.size()
|
78 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
79 |
+
|
80 |
+
q = q.view(b, t, self.num_heads, self.feature_dim).transpose(1, 2)
|
81 |
+
k = k.view(b, t, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
82 |
+
v = v.view(b, t, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
83 |
+
|
84 |
+
# Linear attention
|
85 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
86 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
87 |
+
|
88 |
+
# Compute attention
|
89 |
+
if self.causal:
|
90 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
91 |
+
else:
|
92 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
93 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
94 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
95 |
+
y = self.dropout(y)
|
96 |
+
return y.to(hidden_states.dtype)
|
fla/layers/bitattn.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from einops import rearrange
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
from fla.modules import RotaryEmbedding
|
17 |
+
from fla.modules.fused_bitlinear import FusedBitLinear
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
24 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
25 |
+
except ImportError:
|
26 |
+
warnings.warn(
|
27 |
+
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
|
28 |
+
category=ImportWarning
|
29 |
+
)
|
30 |
+
flash_attn_func = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class BitAttention(nn.Module):
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
hidden_size: int = 2048,
|
40 |
+
num_heads: int = 32,
|
41 |
+
num_kv_heads: Optional[int] = None,
|
42 |
+
window_size: Optional[int] = None,
|
43 |
+
rope_theta: Optional[float] = 10000.,
|
44 |
+
max_position_embeddings: Optional[int] = None,
|
45 |
+
norm_eps: float = 1e-5,
|
46 |
+
layer_idx: int = None
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.num_heads = num_heads
|
51 |
+
if num_kv_heads is None:
|
52 |
+
self.num_kv_heads = self.num_heads
|
53 |
+
else:
|
54 |
+
self.num_kv_heads = num_kv_heads
|
55 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
56 |
+
self.hidden_size = hidden_size
|
57 |
+
self.head_dim = self.hidden_size // self.num_heads
|
58 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
59 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
60 |
+
self.window_size = window_size
|
61 |
+
self.rope_theta = rope_theta
|
62 |
+
self.max_position_embeddings = max_position_embeddings
|
63 |
+
self.layer_idx = layer_idx
|
64 |
+
|
65 |
+
self.q_proj = FusedBitLinear(self.hidden_size, self.hidden_size, bias=False)
|
66 |
+
self.k_proj = FusedBitLinear(self.hidden_size, self.kv_dim, bias=False)
|
67 |
+
self.v_proj = FusedBitLinear(self.hidden_size, self.kv_dim, bias=False)
|
68 |
+
self.o_proj = FusedBitLinear(self.hidden_size, self.hidden_size, bias=False)
|
69 |
+
|
70 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
hidden_states: torch.Tensor,
|
75 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
76 |
+
past_key_values: Optional[Cache] = None,
|
77 |
+
output_attentions: bool = False,
|
78 |
+
use_cache: bool = False,
|
79 |
+
**kwargs,
|
80 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
81 |
+
if attention_mask is not None:
|
82 |
+
assert len(attention_mask.shape) == 2, (
|
83 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
84 |
+
"for padding purposes (0 indicating padding). "
|
85 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
86 |
+
)
|
87 |
+
|
88 |
+
batch_size, q_len, _ = hidden_states.size()
|
89 |
+
|
90 |
+
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
91 |
+
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
92 |
+
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
93 |
+
|
94 |
+
# equivalent to cu_seqlens in `flash_attn`
|
95 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
96 |
+
|
97 |
+
seqlen_offset, max_seqlen = 0, q_len
|
98 |
+
if past_key_values is not None:
|
99 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
100 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
101 |
+
|
102 |
+
if attention_mask is not None:
|
103 |
+
# to deliminate the offsets of padding tokens
|
104 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
105 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
106 |
+
|
107 |
+
if self.max_position_embeddings is not None:
|
108 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
109 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
110 |
+
|
111 |
+
if past_key_values is not None:
|
112 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
113 |
+
k_cached, v_cached = past_key_values.update(
|
114 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
115 |
+
layer_idx=self.layer_idx,
|
116 |
+
offset=q_len,
|
117 |
+
cache_kwargs=dict(window_size=self.window_size)
|
118 |
+
)['attn_state']
|
119 |
+
if cache_has_content:
|
120 |
+
k, v = k_cached, v_cached
|
121 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
122 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
123 |
+
|
124 |
+
if flash_attn_func is None:
|
125 |
+
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
126 |
+
|
127 |
+
# Contains at least one padding token in the sequence
|
128 |
+
if attention_mask is not None:
|
129 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
130 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
131 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
132 |
+
o = flash_attn_varlen_func(
|
133 |
+
q, k, v,
|
134 |
+
cu_seqlens_q=cu_seqlens_q,
|
135 |
+
cu_seqlens_k=cu_seqlens_k,
|
136 |
+
max_seqlen_q=max_seqlen_q,
|
137 |
+
max_seqlen_k=max_seqlen_k,
|
138 |
+
causal=True,
|
139 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
140 |
+
)
|
141 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
142 |
+
elif cu_seqlens is not None:
|
143 |
+
o = flash_attn_varlen_func(
|
144 |
+
q.squeeze(0), k.squeeze(0), v.squeeze(0),
|
145 |
+
cu_seqlens_q=cu_seqlens,
|
146 |
+
cu_seqlens_k=cu_seqlens,
|
147 |
+
max_seqlen_q=max_seqlen,
|
148 |
+
max_seqlen_k=max_seqlen,
|
149 |
+
causal=True,
|
150 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
151 |
+
).unsqueeze(0)
|
152 |
+
else:
|
153 |
+
o = flash_attn_func(
|
154 |
+
q, k, v,
|
155 |
+
causal=True,
|
156 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
157 |
+
)
|
158 |
+
o = o.reshape(batch_size, q_len, -1)
|
159 |
+
o = self.o_proj(o)
|
160 |
+
|
161 |
+
if not output_attentions:
|
162 |
+
attentions = None
|
163 |
+
|
164 |
+
return o, attentions, past_key_values
|
165 |
+
|
166 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
167 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
168 |
+
cache_mask = attention_mask[:, -seq_len:]
|
169 |
+
seqlens = cache_mask.sum(-1, dtype=torch.int32)
|
170 |
+
indices_k = torch.nonzero(cache_mask.flatten(), as_tuple=False).flatten()
|
171 |
+
max_seqlen_k = seqlens.max().item()
|
172 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
173 |
+
|
174 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
175 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
176 |
+
if q_len == seq_len:
|
177 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
178 |
+
cu_seqlens_q = cu_seqlens_k
|
179 |
+
max_seqlen_q = max_seqlen_k
|
180 |
+
indices_q = indices_k
|
181 |
+
elif q_len == 1:
|
182 |
+
max_seqlen_q = 1
|
183 |
+
# There is a memcpy here, that is very bad.
|
184 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
185 |
+
indices_q = cu_seqlens_q[:-1]
|
186 |
+
q = q.squeeze(1)
|
187 |
+
else:
|
188 |
+
# The -q_len: slice assumes left padding.
|
189 |
+
attention_mask = attention_mask[:, -q_len:]
|
190 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
191 |
+
|
192 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
fla/layers/delta_net.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange
|
11 |
+
from torch.nn import functional as F
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
14 |
+
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from transformers.processing_utils import Unpack
|
18 |
+
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
def elu_p1(x):
|
23 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
24 |
+
|
25 |
+
|
26 |
+
def sum_norm(x):
|
27 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
28 |
+
|
29 |
+
|
30 |
+
class DeltaNet(nn.Module):
|
31 |
+
r"""
|
32 |
+
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
|
33 |
+
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
|
34 |
+
|
35 |
+
Args:
|
36 |
+
mode (str, Optional):
|
37 |
+
Which DeltaNet kernel to use.
|
38 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
39 |
+
Default: `chunk`.
|
40 |
+
hidden_size (int, Optional):
|
41 |
+
The hidden size of the input. Default: 1024.
|
42 |
+
expand_k (float, Optional):
|
43 |
+
The expansion ratio for the key dim. Default: 1.0.
|
44 |
+
expand_v (float, Optional):
|
45 |
+
The expansion ratio for the value dim. Default: 1.0.
|
46 |
+
num_heads (int, Optional):
|
47 |
+
The number of heads. Default: 4.
|
48 |
+
use_beta (bool, Optional):
|
49 |
+
Whether to use beta. Default: `True`.
|
50 |
+
use_gate (bool, Optional):
|
51 |
+
Whether to use output gate. Default: `False`.
|
52 |
+
use_short_conv (bool, Optional):
|
53 |
+
Whether to use short convolutions. Default: `True`.
|
54 |
+
conv_size (int, Optional):
|
55 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
56 |
+
conv_bias (bool, Optional):
|
57 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
58 |
+
allow_neg_eigval (bool, Optional):
|
59 |
+
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
|
60 |
+
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
|
61 |
+
layer_idx (int, Optional):
|
62 |
+
The index of the layer. Default: None.
|
63 |
+
norm_eps (float, Optional):
|
64 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
65 |
+
qk_activation (str, Optional):
|
66 |
+
The activation function for the query and key. Default: `silu`.
|
67 |
+
qk_norm (str, Optional):
|
68 |
+
The normalization method for the query and key. Default: `l2`.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
mode: str = 'chunk',
|
74 |
+
d_model: int = None,
|
75 |
+
hidden_size: int = 1024,
|
76 |
+
expand_k: float = 1.0,
|
77 |
+
expand_v: float = 1.0,
|
78 |
+
num_heads: int = 4,
|
79 |
+
use_beta: bool = True,
|
80 |
+
use_gate: bool = False,
|
81 |
+
use_short_conv: bool = True,
|
82 |
+
conv_size: int = 4,
|
83 |
+
conv_bias: bool = False,
|
84 |
+
allow_neg_eigval: bool = False,
|
85 |
+
layer_idx: int = None,
|
86 |
+
qk_activation: str = 'silu',
|
87 |
+
qk_norm: str = 'l2',
|
88 |
+
norm_eps: float = 1e-5,
|
89 |
+
**kwargs
|
90 |
+
) -> DeltaNet:
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.mode = mode
|
94 |
+
self.qk_activation = qk_activation
|
95 |
+
self.qk_norm = qk_norm
|
96 |
+
|
97 |
+
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
|
98 |
+
assert self.qk_norm in ['l2', 'sum']
|
99 |
+
|
100 |
+
if d_model is not None:
|
101 |
+
hidden_size = d_model
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.expand_k = expand_k
|
104 |
+
self.expand_v = expand_v
|
105 |
+
self.num_heads = num_heads
|
106 |
+
self.use_gate = use_gate
|
107 |
+
self.use_short_conv = use_short_conv
|
108 |
+
self.conv_size = conv_size
|
109 |
+
self.conv_bias = conv_bias
|
110 |
+
self.allow_neg_eigval = allow_neg_eigval
|
111 |
+
|
112 |
+
self.key_dim = int(hidden_size * expand_k)
|
113 |
+
self.value_dim = int(hidden_size * expand_v)
|
114 |
+
self.head_k_dim = self.key_dim // num_heads
|
115 |
+
self.head_v_dim = self.value_dim // num_heads
|
116 |
+
self.layer_idx = layer_idx
|
117 |
+
|
118 |
+
self.silu = nn.SiLU()
|
119 |
+
if mode == 'fused_chunk':
|
120 |
+
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
|
121 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
122 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
123 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
124 |
+
|
125 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
126 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
127 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
128 |
+
|
129 |
+
self.use_beta = use_beta
|
130 |
+
if self.use_beta:
|
131 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
132 |
+
if use_short_conv:
|
133 |
+
self.conv_size = conv_size
|
134 |
+
self.q_conv1d = ShortConvolution(
|
135 |
+
hidden_size=self.key_dim,
|
136 |
+
kernel_size=conv_size,
|
137 |
+
activation='silu' if qk_activation == 'silu' else None
|
138 |
+
)
|
139 |
+
self.k_conv1d = ShortConvolution(
|
140 |
+
hidden_size=self.key_dim,
|
141 |
+
kernel_size=conv_size,
|
142 |
+
activation='silu' if qk_activation == 'silu' else None
|
143 |
+
)
|
144 |
+
self.v_conv1d = ShortConvolution(
|
145 |
+
hidden_size=self.value_dim,
|
146 |
+
kernel_size=conv_size,
|
147 |
+
activation='silu'
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
raise UserWarning(
|
151 |
+
"ShortConvolution is crucial to the performance. "
|
152 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
153 |
+
)
|
154 |
+
if use_gate:
|
155 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
156 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
157 |
+
else:
|
158 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
159 |
+
|
160 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
hidden_states: torch.Tensor,
|
165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
166 |
+
past_key_values: Optional[Cache] = None,
|
167 |
+
use_cache: Optional[bool] = False,
|
168 |
+
output_attentions: Optional[bool] = False,
|
169 |
+
**kwargs: Unpack[Dict]
|
170 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
171 |
+
if attention_mask is not None:
|
172 |
+
assert len(attention_mask.shape) == 2, (
|
173 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
174 |
+
"for padding purposes (0 indicating padding). "
|
175 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
176 |
+
)
|
177 |
+
|
178 |
+
# change to inference mode.
|
179 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
180 |
+
|
181 |
+
last_state = None
|
182 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
183 |
+
last_state = past_key_values[self.layer_idx]
|
184 |
+
|
185 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
186 |
+
if self.use_short_conv:
|
187 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
188 |
+
if last_state is not None:
|
189 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
190 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
191 |
+
q, conv_state_q = self.q_conv1d(
|
192 |
+
x=self.q_proj(hidden_states),
|
193 |
+
mask=conv_mask,
|
194 |
+
cache=conv_state_q,
|
195 |
+
output_final_state=use_cache,
|
196 |
+
cu_seqlens=cu_seqlens
|
197 |
+
)
|
198 |
+
k, conv_state_k = self.k_conv1d(
|
199 |
+
x=self.k_proj(hidden_states),
|
200 |
+
mask=conv_mask,
|
201 |
+
cache=conv_state_k,
|
202 |
+
output_final_state=use_cache,
|
203 |
+
cu_seqlens=cu_seqlens
|
204 |
+
)
|
205 |
+
v, conv_state_v = self.v_conv1d(
|
206 |
+
x=self.v_proj(hidden_states),
|
207 |
+
mask=conv_mask,
|
208 |
+
cache=conv_state_v,
|
209 |
+
output_final_state=use_cache,
|
210 |
+
cu_seqlens=cu_seqlens
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
q = self.q_proj(hidden_states)
|
214 |
+
k = self.k_proj(hidden_states)
|
215 |
+
if self.qk_activation == 'silu':
|
216 |
+
q, k = self.silu(q), self.silu(k)
|
217 |
+
v = self.silu(self.v_proj(hidden_states))
|
218 |
+
|
219 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
220 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
221 |
+
if self.qk_activation != 'silu':
|
222 |
+
if self.qk_activation == 'relu':
|
223 |
+
q, k = q.relu(), k.relu()
|
224 |
+
elif self.qk_activation == 'elu':
|
225 |
+
q, k = elu_p1(q), elu_p1(k)
|
226 |
+
elif self.qk_activation == 'identity':
|
227 |
+
pass
|
228 |
+
else:
|
229 |
+
raise NotImplementedError
|
230 |
+
|
231 |
+
if self.qk_norm == 'sum':
|
232 |
+
q = sum_norm(q).to(q)
|
233 |
+
k = sum_norm(k).to(k)
|
234 |
+
|
235 |
+
if self.use_beta:
|
236 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
237 |
+
else:
|
238 |
+
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
|
239 |
+
|
240 |
+
if self.allow_neg_eigval:
|
241 |
+
beta = beta * 2.
|
242 |
+
|
243 |
+
# dealing with padding
|
244 |
+
if attention_mask is not None:
|
245 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
246 |
+
|
247 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
248 |
+
if mode == 'fused_recurrent':
|
249 |
+
o, recurrent_state = fused_recurrent_delta_rule(
|
250 |
+
q=q,
|
251 |
+
k=k,
|
252 |
+
v=v,
|
253 |
+
beta=beta,
|
254 |
+
initial_state=recurrent_state,
|
255 |
+
output_final_state=use_cache,
|
256 |
+
cu_seqlens=cu_seqlens,
|
257 |
+
head_first=False,
|
258 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
259 |
+
)
|
260 |
+
elif mode == 'chunk':
|
261 |
+
o, recurrent_state = chunk_delta_rule(
|
262 |
+
q=q,
|
263 |
+
k=k,
|
264 |
+
v=v,
|
265 |
+
beta=beta,
|
266 |
+
initial_state=recurrent_state,
|
267 |
+
output_final_state=use_cache,
|
268 |
+
cu_seqlens=cu_seqlens,
|
269 |
+
head_first=False,
|
270 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
274 |
+
|
275 |
+
if past_key_values is not None:
|
276 |
+
past_key_values.update(
|
277 |
+
recurrent_state=recurrent_state,
|
278 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
279 |
+
layer_idx=self.layer_idx,
|
280 |
+
offset=q.shape[1]
|
281 |
+
)
|
282 |
+
|
283 |
+
if self.use_gate:
|
284 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
285 |
+
o = self.o_norm(o, g)
|
286 |
+
else:
|
287 |
+
o = self.o_norm(o)
|
288 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
289 |
+
o = self.o_proj(o)
|
290 |
+
|
291 |
+
return o, None, past_key_values
|
fla/layers/forgetting_attn.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
from fla.modules import GroupNorm
|
16 |
+
from fla.ops.forgetting_attn.parallel import parallel_forgetting_attn
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class ForgettingAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
hidden_size: int = 2048,
|
30 |
+
num_heads: int = 32,
|
31 |
+
num_kv_heads: Optional[int] = None,
|
32 |
+
qkv_bias: bool = False,
|
33 |
+
qk_norm: bool = False,
|
34 |
+
window_size: Optional[int] = None,
|
35 |
+
use_output_gate: bool = False,
|
36 |
+
layer_idx: int = None
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.num_heads = num_heads
|
42 |
+
if num_kv_heads is None:
|
43 |
+
self.num_kv_heads = self.num_heads
|
44 |
+
else:
|
45 |
+
self.num_kv_heads = num_kv_heads
|
46 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
47 |
+
self.head_dim = self.hidden_size // self.num_heads
|
48 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
49 |
+
self.qkv_bias = qkv_bias
|
50 |
+
self.qk_norm = qk_norm
|
51 |
+
|
52 |
+
self.window_size = window_size
|
53 |
+
self.use_output_gate = use_output_gate
|
54 |
+
self.layer_idx = layer_idx
|
55 |
+
|
56 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias)
|
57 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
58 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
59 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_heads, bias=True)
|
60 |
+
|
61 |
+
if use_output_gate:
|
62 |
+
self.g_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
63 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
64 |
+
|
65 |
+
if qk_norm:
|
66 |
+
self.q_norm = GroupNorm(
|
67 |
+
num_groups=self.num_heads,
|
68 |
+
hidden_size=self.hidden_size,
|
69 |
+
is_rms_norm=True,
|
70 |
+
)
|
71 |
+
self.k_norm = GroupNorm(
|
72 |
+
num_groups=self.num_kv_heads,
|
73 |
+
hidden_size=self.kv_dim,
|
74 |
+
is_rms_norm=True,
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
hidden_states: torch.Tensor,
|
80 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
81 |
+
past_key_values: Optional[Cache] = None,
|
82 |
+
output_attentions: bool = False,
|
83 |
+
use_cache: bool = False,
|
84 |
+
**kwargs,
|
85 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
86 |
+
if attention_mask is not None:
|
87 |
+
assert len(attention_mask.shape) == 2, (
|
88 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
89 |
+
"for padding purposes (0 indicating padding). "
|
90 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
91 |
+
)
|
92 |
+
|
93 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
94 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
95 |
+
f = F.logsigmoid(self.f_proj(hidden_states).float())
|
96 |
+
if self.qk_norm:
|
97 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
98 |
+
|
99 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
100 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
101 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
102 |
+
|
103 |
+
o = parallel_forgetting_attn(q, k, v, f, cu_seqlens=cu_seqlens)
|
104 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
105 |
+
if self.use_output_gate:
|
106 |
+
o = self.g_proj(hidden_states).sigmoid() * o
|
107 |
+
o = self.o_proj(o)
|
108 |
+
|
109 |
+
return o, None, past_key_values
|
fla/layers/gated_deltanet.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import math
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
15 |
+
from fla.ops.gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from transformers.processing_utils import Unpack
|
19 |
+
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
|
23 |
+
@torch.compile
|
24 |
+
def elu_p1(x):
|
25 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
26 |
+
|
27 |
+
|
28 |
+
@torch.compile
|
29 |
+
def sum_norm(x):
|
30 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
31 |
+
|
32 |
+
|
33 |
+
class GatedDeltaNet(nn.Module):
|
34 |
+
"""
|
35 |
+
The layer implementaion for [Gated Delta Networks: Improving Mamba2 with Delta Rule](https://arxiv.org/abs/2412.06464). # noqa
|
36 |
+
|
37 |
+
Similar to Mamba2, each layer contains around 6*hidden_size*hidden_size parameters.
|
38 |
+
|
39 |
+
Parameter alloation when use_gate=True:
|
40 |
+
- 0.75 * hidden_size * hidden_size for the q_proj and k_proj each
|
41 |
+
- 1.5 * hidden_size * hidden_size for the v_proj, g_proj and o_proj each
|
42 |
+
- Others are ignorably small.
|
43 |
+
- In total = 0.75 * 2 + 1.5 * 3 = 6 * hidden_size * hidden_size
|
44 |
+
NOTE: num_heads * head_dim = 0.75 * hidden_size, please make sure to set the correct num_heads and head_dim.
|
45 |
+
|
46 |
+
Parameter allocation when use_gate=False:
|
47 |
+
- 1 * hidden_size * hidden_size for the q_proj and k_proj each
|
48 |
+
- 2 * hidden_size * hidden_size for the v_proj and o_proj each
|
49 |
+
- Others are ignorably small.
|
50 |
+
- In total = 1 * 2 + 2 * 2 = 6 * hidden_size * hidden_size
|
51 |
+
|
52 |
+
Args:
|
53 |
+
hidden_size (int, Optional):
|
54 |
+
The hidden size of the input. Default: 2048.
|
55 |
+
expand_v (float, Optional):
|
56 |
+
The expansion ratio for the value dim. Default: 2.0.
|
57 |
+
head_dim (int, Optional):
|
58 |
+
The dimension of each head. Default: 256.
|
59 |
+
num_heads (int, Optional):
|
60 |
+
The number of heads. Default: 4.
|
61 |
+
mode (str, Optional):
|
62 |
+
Which Gated DeltaNet kernel to use.
|
63 |
+
Currently available: `chunk` and `fused_recurrent`.
|
64 |
+
Default: `chunk`.
|
65 |
+
use_beta (bool, Optional):
|
66 |
+
Whether to use beta. Default: `True`.
|
67 |
+
use_gate (bool, Optional):
|
68 |
+
Whether to use output gate. Default: `True`.
|
69 |
+
use_short_conv (bool, Optional):
|
70 |
+
Whether to use short convolutions. Default: `True`.
|
71 |
+
conv_size (int, Optional):
|
72 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
73 |
+
conv_bias (bool, Optional):
|
74 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
75 |
+
layer_idx (int, Optional):
|
76 |
+
The index of the layer. Default: None.
|
77 |
+
norm_eps (float, Optional):
|
78 |
+
The epsilon value for the normalization layer. Default: 1e-5.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
hidden_size: int = 2048,
|
84 |
+
expand_v: float = 2,
|
85 |
+
head_dim: int = 256,
|
86 |
+
num_heads: int = 6,
|
87 |
+
mode: str = 'chunk',
|
88 |
+
use_gate: bool = True,
|
89 |
+
use_short_conv: bool = True,
|
90 |
+
conv_size: int = 4,
|
91 |
+
conv_bias: bool = False,
|
92 |
+
layer_idx: int = None,
|
93 |
+
norm_eps: float = 1e-5,
|
94 |
+
**kwargs
|
95 |
+
) -> GatedDeltaNet:
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.mode = mode
|
99 |
+
|
100 |
+
self.hidden_size = hidden_size
|
101 |
+
self.expand_v = expand_v
|
102 |
+
|
103 |
+
self.use_gate = use_gate
|
104 |
+
self.use_short_conv = use_short_conv
|
105 |
+
self.conv_size = conv_size
|
106 |
+
self.conv_bias = conv_bias
|
107 |
+
|
108 |
+
self.head_dim = head_dim
|
109 |
+
self.num_heads = num_heads
|
110 |
+
|
111 |
+
self.key_dim = int(self.num_heads * self.head_dim)
|
112 |
+
self.value_dim = int(self.key_dim * self.expand_v)
|
113 |
+
self.head_k_dim = head_dim
|
114 |
+
self.head_v_dim = int(head_dim * self.expand_v)
|
115 |
+
self.layer_idx = layer_idx
|
116 |
+
|
117 |
+
# Consistency check: Ensure expand_v produces integer values
|
118 |
+
if not math.isclose(self.key_dim * expand_v, self.value_dim, rel_tol=1e-5):
|
119 |
+
raise ValueError(
|
120 |
+
f"expand_v={expand_v} does not produce an integer value when multiplied by key_dim={self.key_dim}. "
|
121 |
+
f"Resulting value_dim would be {self.key_dim * expand_v}, which is invalid for nn.Linear."
|
122 |
+
)
|
123 |
+
if not math.isclose(head_dim * expand_v, self.head_v_dim, rel_tol=1e-5):
|
124 |
+
raise ValueError(
|
125 |
+
f"expand_v={expand_v} does not produce an integer value when multiplied by head_dim={head_dim}. "
|
126 |
+
f"Resulting head_v_dim would be {head_dim * expand_v}, which is invalid for FusedRMSNormGated."
|
127 |
+
)
|
128 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
129 |
+
|
130 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
131 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
132 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
133 |
+
self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
134 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
135 |
+
|
136 |
+
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
|
137 |
+
self.A_log = nn.Parameter(torch.log(A))
|
138 |
+
self.A_log._no_weight_decay = True
|
139 |
+
# hard coded for now
|
140 |
+
dt_min = 0.001
|
141 |
+
dt_max = 0.1
|
142 |
+
dt_init_floor = 1e-4
|
143 |
+
dt = torch.exp(
|
144 |
+
torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
|
145 |
+
+ math.log(dt_min)
|
146 |
+
)
|
147 |
+
dt = torch.clamp(dt, min=dt_init_floor)
|
148 |
+
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
149 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
150 |
+
self.dt_bias = nn.Parameter(inv_dt)
|
151 |
+
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
|
152 |
+
# name.endswith("bias") in param_grouping.py
|
153 |
+
self.dt_bias._no_weight_decay = True
|
154 |
+
|
155 |
+
if use_short_conv:
|
156 |
+
self.conv_size = conv_size
|
157 |
+
self.q_conv1d = ShortConvolution(
|
158 |
+
hidden_size=self.key_dim,
|
159 |
+
kernel_size=conv_size,
|
160 |
+
activation='silu'
|
161 |
+
)
|
162 |
+
self.k_conv1d = ShortConvolution(
|
163 |
+
hidden_size=self.key_dim,
|
164 |
+
kernel_size=conv_size,
|
165 |
+
activation='silu'
|
166 |
+
)
|
167 |
+
self.v_conv1d = ShortConvolution(
|
168 |
+
hidden_size=self.value_dim,
|
169 |
+
kernel_size=conv_size,
|
170 |
+
activation='silu'
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
raise UserWarning(
|
174 |
+
"ShortConvolution is crucial to the performance. "
|
175 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
176 |
+
)
|
177 |
+
if use_gate:
|
178 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
179 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
180 |
+
else:
|
181 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
182 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
183 |
+
|
184 |
+
def forward(
|
185 |
+
self,
|
186 |
+
hidden_states: torch.Tensor,
|
187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
188 |
+
past_key_values: Optional[Cache] = None,
|
189 |
+
use_cache: Optional[bool] = False,
|
190 |
+
output_attentions: Optional[bool] = False,
|
191 |
+
**kwargs: Unpack[Dict]
|
192 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
193 |
+
if attention_mask is not None:
|
194 |
+
assert len(attention_mask.shape) == 2, (
|
195 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
196 |
+
"for padding purposes (0 indicating padding). "
|
197 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
198 |
+
)
|
199 |
+
|
200 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
201 |
+
if self.training:
|
202 |
+
assert mode == 'chunk', "Only chunk mode is supported in training."
|
203 |
+
|
204 |
+
last_state = None
|
205 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
206 |
+
last_state = past_key_values[self.layer_idx]
|
207 |
+
|
208 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
209 |
+
if self.use_short_conv:
|
210 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
211 |
+
if last_state is not None:
|
212 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
213 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
214 |
+
q, conv_state_q = self.q_conv1d(
|
215 |
+
x=self.q_proj(hidden_states),
|
216 |
+
mask=conv_mask,
|
217 |
+
cache=conv_state_q,
|
218 |
+
output_final_state=use_cache,
|
219 |
+
cu_seqlens=cu_seqlens
|
220 |
+
)
|
221 |
+
k, conv_state_k = self.k_conv1d(
|
222 |
+
x=self.k_proj(hidden_states),
|
223 |
+
mask=conv_mask,
|
224 |
+
cache=conv_state_k,
|
225 |
+
output_final_state=use_cache,
|
226 |
+
cu_seqlens=cu_seqlens
|
227 |
+
)
|
228 |
+
v, conv_state_v = self.v_conv1d(
|
229 |
+
x=self.v_proj(hidden_states),
|
230 |
+
mask=conv_mask,
|
231 |
+
cache=conv_state_v,
|
232 |
+
output_final_state=use_cache,
|
233 |
+
cu_seqlens=cu_seqlens
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
q = F.silu(self.q_proj(hidden_states))
|
237 |
+
k = F.silu(self.k_proj(hidden_states))
|
238 |
+
v = F.silu(self.v_proj(hidden_states))
|
239 |
+
|
240 |
+
q, k = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim), (q, k))
|
241 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
242 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
243 |
+
g = -self.A_log.float().exp() * F.softplus(self.a_proj(hidden_states).float() + self.dt_bias)
|
244 |
+
|
245 |
+
# dealing with padding
|
246 |
+
if attention_mask is not None:
|
247 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
248 |
+
g = g.mul(attention_mask[:, -g.shape[-2]:, None])
|
249 |
+
|
250 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
251 |
+
if mode == 'chunk':
|
252 |
+
o, recurrent_state = chunk_gated_delta_rule(
|
253 |
+
q=q,
|
254 |
+
k=k,
|
255 |
+
v=v,
|
256 |
+
g=g,
|
257 |
+
beta=beta,
|
258 |
+
initial_state=recurrent_state,
|
259 |
+
output_final_state=use_cache,
|
260 |
+
cu_seqlens=cu_seqlens,
|
261 |
+
head_first=False,
|
262 |
+
use_qk_l2norm_in_kernel=True
|
263 |
+
)
|
264 |
+
elif mode == 'fused_recurrent':
|
265 |
+
o, recurrent_state = fused_recurrent_gated_delta_rule(
|
266 |
+
q=q,
|
267 |
+
k=k,
|
268 |
+
v=v,
|
269 |
+
g=g,
|
270 |
+
beta=beta,
|
271 |
+
initial_state=recurrent_state,
|
272 |
+
output_final_state=use_cache,
|
273 |
+
cu_seqlens=cu_seqlens,
|
274 |
+
head_first=False,
|
275 |
+
use_qk_l2norm_in_kernel=True
|
276 |
+
)
|
277 |
+
if past_key_values is not None:
|
278 |
+
past_key_values.update(
|
279 |
+
recurrent_state=recurrent_state,
|
280 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
281 |
+
layer_idx=self.layer_idx,
|
282 |
+
offset=q.shape[1]
|
283 |
+
)
|
284 |
+
|
285 |
+
if self.use_gate:
|
286 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
287 |
+
o = self.o_norm(o, g)
|
288 |
+
else:
|
289 |
+
o = self.o_norm(o)
|
290 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
291 |
+
o = self.o_proj(o)
|
292 |
+
|
293 |
+
return o, None, past_key_values
|
fla/layers/gated_deltaproduct.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import math
|
4 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import rearrange
|
10 |
+
|
11 |
+
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
12 |
+
from fla.ops.delta_rule import chunk_delta_rule
|
13 |
+
from fla.ops.gated_delta_rule import chunk_gated_delta_rule
|
14 |
+
|
15 |
+
if TYPE_CHECKING:
|
16 |
+
from transformers.processing_utils import Unpack
|
17 |
+
|
18 |
+
from fla.models.utils import Cache
|
19 |
+
|
20 |
+
|
21 |
+
def elu_p1(x):
|
22 |
+
return (F.elu(x, 1.0, False) + 1.0).to(x)
|
23 |
+
|
24 |
+
|
25 |
+
def sum_norm(x):
|
26 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
27 |
+
|
28 |
+
|
29 |
+
def interleave_multiple_sequences(*sequences):
|
30 |
+
"""
|
31 |
+
Interleave multiple sequences together.
|
32 |
+
For example, with sequences [A1, A2], [B1, B2], [C1, C2],
|
33 |
+
returns [A1, B1, C1, A2, B2, C2]
|
34 |
+
"""
|
35 |
+
if isinstance(sequences[0], (list, tuple)):
|
36 |
+
sequences = sequences[0]
|
37 |
+
|
38 |
+
if len(sequences) == 1:
|
39 |
+
return sequences[0]
|
40 |
+
|
41 |
+
# All sequences should have the same shape
|
42 |
+
assert all(s.shape == sequences[0].shape for s in sequences)
|
43 |
+
|
44 |
+
# Get the original shape
|
45 |
+
batch_size, seq_len, *rest = sequences[0].shape
|
46 |
+
|
47 |
+
# Stack sequences along a new dimension
|
48 |
+
stacked = torch.stack(sequences, dim=2)
|
49 |
+
|
50 |
+
# Reshape to interleave
|
51 |
+
reshaped = stacked.view(batch_size, seq_len * len(sequences), *rest)
|
52 |
+
|
53 |
+
return reshaped
|
54 |
+
|
55 |
+
|
56 |
+
class GatedDeltaProduct(nn.Module):
|
57 |
+
"""
|
58 |
+
Generalized version of GatedDoubleDeltaNet that supports arbitrary number of householder transformations.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
hidden_size: int = 2048,
|
64 |
+
expand_v: float = 2,
|
65 |
+
head_dim: int = 256,
|
66 |
+
num_heads: int = 6,
|
67 |
+
num_householder: int = 2, # New parameter for number of householder transformations
|
68 |
+
mode: str = "chunk",
|
69 |
+
use_gate: bool = True,
|
70 |
+
use_forget_gate: bool = True, # when true Gated DeltaProduct, when false DeltaProduct
|
71 |
+
use_short_conv: bool = True,
|
72 |
+
conv_size: int = 4,
|
73 |
+
conv_bias: bool = False,
|
74 |
+
layer_idx: int | None = None,
|
75 |
+
norm_eps: float = 1e-5,
|
76 |
+
allow_neg_eigval: bool = False, # when true (Gated) DeltaProduct [-1, 1], when false (Gated) DeltaProduct [0, 1]
|
77 |
+
**kwargs,
|
78 |
+
) -> None:
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.mode = mode
|
82 |
+
self.hidden_size = hidden_size
|
83 |
+
self.expand_v = expand_v
|
84 |
+
self.use_gate = use_gate
|
85 |
+
self.use_short_conv = use_short_conv
|
86 |
+
self.conv_size = conv_size
|
87 |
+
self.conv_bias = conv_bias
|
88 |
+
self.head_dim = head_dim
|
89 |
+
self.num_heads = num_heads
|
90 |
+
self.num_householder = num_householder
|
91 |
+
self.allow_neg_eigval = allow_neg_eigval
|
92 |
+
self.use_forget_gate = use_forget_gate
|
93 |
+
self.key_dim = self.num_heads * self.head_dim
|
94 |
+
self.value_dim = int(self.key_dim * self.expand_v)
|
95 |
+
self.head_qk_dim = head_dim
|
96 |
+
self.head_v_dim = int(head_dim * self.expand_v)
|
97 |
+
self.layer_idx = layer_idx
|
98 |
+
self.silu = nn.SiLU()
|
99 |
+
assert mode in ["chunk", "fused_recurrent"], f"Not supported mode `{mode}`."
|
100 |
+
# Create multiple projection layers for each householder transformation
|
101 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
102 |
+
|
103 |
+
self.k_projs = nn.ModuleList(
|
104 |
+
[
|
105 |
+
nn.Linear(hidden_size, self.key_dim, bias=False)
|
106 |
+
for _ in range(num_householder)
|
107 |
+
]
|
108 |
+
)
|
109 |
+
self.v_projs = nn.ModuleList(
|
110 |
+
[
|
111 |
+
nn.Linear(hidden_size, self.value_dim, bias=False)
|
112 |
+
for _ in range(num_householder)
|
113 |
+
]
|
114 |
+
)
|
115 |
+
self.b_projs = nn.ModuleList(
|
116 |
+
[
|
117 |
+
nn.Linear(hidden_size, self.num_heads, bias=False)
|
118 |
+
for _ in range(num_householder)
|
119 |
+
]
|
120 |
+
)
|
121 |
+
if use_short_conv:
|
122 |
+
self.q_conv1ds = nn.ModuleList(
|
123 |
+
[
|
124 |
+
ShortConvolution(
|
125 |
+
hidden_size=self.key_dim,
|
126 |
+
kernel_size=conv_size,
|
127 |
+
activation="silu",
|
128 |
+
)
|
129 |
+
for _ in range(num_householder)
|
130 |
+
]
|
131 |
+
)
|
132 |
+
self.k_conv1ds = nn.ModuleList(
|
133 |
+
[
|
134 |
+
ShortConvolution(
|
135 |
+
hidden_size=self.key_dim,
|
136 |
+
kernel_size=conv_size,
|
137 |
+
activation="silu",
|
138 |
+
)
|
139 |
+
for _ in range(num_householder)
|
140 |
+
]
|
141 |
+
)
|
142 |
+
self.v_conv1ds = nn.ModuleList(
|
143 |
+
[
|
144 |
+
ShortConvolution(
|
145 |
+
hidden_size=self.value_dim,
|
146 |
+
kernel_size=conv_size,
|
147 |
+
activation="silu",
|
148 |
+
)
|
149 |
+
for _ in range(num_householder)
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
if self.use_forget_gate:
|
154 |
+
self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
155 |
+
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
|
156 |
+
A_log = torch.log(A)
|
157 |
+
self.A_log = nn.Parameter(A_log)
|
158 |
+
self.A_log._no_weight_decay = True
|
159 |
+
|
160 |
+
# Initialize dt parameters
|
161 |
+
dt_min = 0.001
|
162 |
+
dt_max = 0.1
|
163 |
+
dt_init_floor = 1e-4
|
164 |
+
dt = torch.exp(
|
165 |
+
torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
|
166 |
+
+ math.log(dt_min)
|
167 |
+
)
|
168 |
+
dt = torch.clamp(dt, min=dt_init_floor)
|
169 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
170 |
+
self.dt_bias = nn.Parameter(inv_dt)
|
171 |
+
self.dt_bias._no_weight_decay = True
|
172 |
+
|
173 |
+
if use_gate:
|
174 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
175 |
+
self.o_norm = FusedRMSNormSwishGate(self.head_v_dim, eps=norm_eps)
|
176 |
+
else:
|
177 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
178 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
179 |
+
self.k_id = torch.nn.Identity()
|
180 |
+
self.apply(self._initialize_weights)
|
181 |
+
|
182 |
+
def _initialize_weights(self, module: nn.Module):
|
183 |
+
if getattr(module, "_is_hf_initialized", False):
|
184 |
+
return
|
185 |
+
if isinstance(module, nn.Linear):
|
186 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
187 |
+
if module.bias is not None:
|
188 |
+
nn.init.zeros_(module.bias)
|
189 |
+
module._is_hf_initialized = True
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
hidden_states: torch.Tensor,
|
194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
195 |
+
past_key_values: Optional[Cache] = None,
|
196 |
+
use_cache: Optional[bool] = False,
|
197 |
+
output_attentions: Optional[bool] = False,
|
198 |
+
**kwargs: Unpack[Dict],
|
199 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
200 |
+
if attention_mask is not None:
|
201 |
+
assert len(attention_mask.shape) == 2, (
|
202 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
203 |
+
"for padding purposes (0 indicating padding)."
|
204 |
+
)
|
205 |
+
|
206 |
+
mode = (
|
207 |
+
"chunk" # 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
208 |
+
)
|
209 |
+
if self.training:
|
210 |
+
assert mode == "chunk", "Only chunk mode is supported in training."
|
211 |
+
|
212 |
+
last_state = None
|
213 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
214 |
+
last_state = past_key_values[self.layer_idx]
|
215 |
+
|
216 |
+
# Process each householder transformation
|
217 |
+
ks, vs, betas = [], [], []
|
218 |
+
conv_states = []
|
219 |
+
|
220 |
+
for i in range(self.num_householder):
|
221 |
+
if self.use_short_conv:
|
222 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
223 |
+
if last_state is not None:
|
224 |
+
conv_state_q, conv_state_k, conv_state_v = last_state["conv_state"][
|
225 |
+
i
|
226 |
+
]
|
227 |
+
conv_mask = (
|
228 |
+
attention_mask[:, -hidden_states.shape[1]:]
|
229 |
+
if attention_mask is not None
|
230 |
+
else None
|
231 |
+
)
|
232 |
+
|
233 |
+
k, conv_state_k = self.k_conv1ds[i](
|
234 |
+
x=self.k_projs[i](hidden_states),
|
235 |
+
mask=conv_mask,
|
236 |
+
cache=conv_state_k,
|
237 |
+
output_final_state=use_cache,
|
238 |
+
)
|
239 |
+
v, conv_state_v = self.v_conv1ds[i](
|
240 |
+
x=self.v_projs[i](hidden_states),
|
241 |
+
mask=conv_mask,
|
242 |
+
cache=conv_state_v,
|
243 |
+
output_final_state=use_cache,
|
244 |
+
)
|
245 |
+
conv_states.append((conv_state_q, conv_state_k, conv_state_v))
|
246 |
+
else:
|
247 |
+
k = self.silu(self.k_projs[i](hidden_states))
|
248 |
+
v = self.silu(self.v_projs[i](hidden_states))
|
249 |
+
|
250 |
+
ks.append(k)
|
251 |
+
vs.append(v)
|
252 |
+
|
253 |
+
beta = self.b_projs[i](
|
254 |
+
hidden_states
|
255 |
+
).sigmoid() # bs, sequence_length, num_heads
|
256 |
+
if attention_mask is not None:
|
257 |
+
beta = beta.mul(attention_mask[:, -hidden_states.shape[1]:, None])
|
258 |
+
if self.allow_neg_eigval:
|
259 |
+
beta = beta * 2
|
260 |
+
betas.append(beta)
|
261 |
+
|
262 |
+
if self.use_short_conv:
|
263 |
+
q, conv_state_q = self.q_conv1ds[0](
|
264 |
+
x=self.q_proj(hidden_states),
|
265 |
+
mask=conv_mask,
|
266 |
+
cache=conv_state_q,
|
267 |
+
output_final_state=use_cache,
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
q = self.silu(self.q_proj(hidden_states))
|
271 |
+
q = interleave_multiple_sequences(
|
272 |
+
[torch.zeros_like(q)] * (self.num_householder - 1) + [q]
|
273 |
+
)
|
274 |
+
# Interleave all sequences
|
275 |
+
k = interleave_multiple_sequences(ks)
|
276 |
+
v = interleave_multiple_sequences(vs)
|
277 |
+
beta = interleave_multiple_sequences(betas)
|
278 |
+
|
279 |
+
q, k, v = (
|
280 |
+
rearrange(x, "b t (h d) -> b t h d", h=self.num_heads) for x in (q, k, v)
|
281 |
+
)
|
282 |
+
|
283 |
+
recurrent_state = (
|
284 |
+
last_state["recurrent_state"] if last_state is not None else None
|
285 |
+
)
|
286 |
+
offsets = kwargs.get("offsets")
|
287 |
+
|
288 |
+
if mode == "chunk":
|
289 |
+
if self.use_forget_gate:
|
290 |
+
g = -self.A_log.float().exp() * F.softplus(
|
291 |
+
self.a_proj(hidden_states).float() + self.dt_bias
|
292 |
+
)
|
293 |
+
if attention_mask is not None:
|
294 |
+
g = g.mul(attention_mask[:, -g.shape[-2]:, None])
|
295 |
+
|
296 |
+
# Interleave g with zeros for non-first transformations
|
297 |
+
g = interleave_multiple_sequences(
|
298 |
+
[g] + [torch.zeros_like(g)] * (self.num_householder - 1)
|
299 |
+
)
|
300 |
+
|
301 |
+
o, recurrent_state = chunk_gated_delta_rule(
|
302 |
+
q=q,
|
303 |
+
k=k,
|
304 |
+
v=v,
|
305 |
+
g=g,
|
306 |
+
beta=beta,
|
307 |
+
initial_state=recurrent_state,
|
308 |
+
output_final_state=use_cache,
|
309 |
+
cu_seqlens=offsets,
|
310 |
+
head_first=False,
|
311 |
+
use_qk_l2norm_in_kernel=True
|
312 |
+
)
|
313 |
+
else:
|
314 |
+
o, recurrent_state = chunk_delta_rule(
|
315 |
+
q=q,
|
316 |
+
k=k,
|
317 |
+
v=v,
|
318 |
+
beta=beta,
|
319 |
+
initial_state=recurrent_state,
|
320 |
+
output_final_state=use_cache,
|
321 |
+
cu_seqlens=offsets,
|
322 |
+
head_first=False,
|
323 |
+
use_qk_l2norm_in_kernel=True
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
327 |
+
|
328 |
+
# Take every nth element for n householder transformations
|
329 |
+
o = o[:, self.num_householder - 1:: self.num_householder, :]
|
330 |
+
|
331 |
+
if past_key_values is not None:
|
332 |
+
past_key_values.update(
|
333 |
+
recurrent_state=recurrent_state,
|
334 |
+
conv_state=conv_states if self.use_short_conv else None,
|
335 |
+
layer_idx=self.layer_idx,
|
336 |
+
offset=q.shape[2],
|
337 |
+
)
|
338 |
+
|
339 |
+
if self.use_gate:
|
340 |
+
g = rearrange(
|
341 |
+
self.g_proj(hidden_states),
|
342 |
+
"... (h d) -> ... h d",
|
343 |
+
h=self.num_heads,
|
344 |
+
)
|
345 |
+
o = self.o_norm(o, g)
|
346 |
+
else:
|
347 |
+
o = self.o_norm(o)
|
348 |
+
o = rearrange(o, "b t h d -> b t (h d)")
|
349 |
+
o = self.o_proj(o)
|
350 |
+
|
351 |
+
return o, None, past_key_values
|
fla/layers/gsa.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from fla.modules import RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.feature_map import ReLUFeatureMap, SwishFeatureMap, T2RFeatureMap
|
16 |
+
from fla.modules.layernorm import rms_norm_linear
|
17 |
+
from fla.ops.gsa import chunk_gsa, fused_recurrent_gsa
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from transformers.processing_utils import Unpack
|
21 |
+
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
|
24 |
+
|
25 |
+
class GatedSlotAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
mode: str = 'chunk',
|
30 |
+
hidden_size: int = 1024,
|
31 |
+
expand_k: float = 1.,
|
32 |
+
expand_v: float = 1.,
|
33 |
+
num_heads: int = 4,
|
34 |
+
num_kv_heads: Optional[int] = None,
|
35 |
+
use_short_conv: bool = False,
|
36 |
+
conv_size: int = 4,
|
37 |
+
conv_bias: bool = False,
|
38 |
+
num_slots: Optional[int] = None,
|
39 |
+
elementwise_affine: Optional[bool] = True,
|
40 |
+
norm_eps: float = 1e-5,
|
41 |
+
gate_logit_normalizer: int = 8,
|
42 |
+
feature_map: str = 'swish',
|
43 |
+
use_output_gate: bool = False,
|
44 |
+
use_norm: bool = True,
|
45 |
+
layer_idx: Optional[int] = None,
|
46 |
+
scale: Optional[float] = 1.,
|
47 |
+
**kwargs
|
48 |
+
) -> GatedSlotAttention:
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.mode = mode
|
52 |
+
self.hidden_size = hidden_size
|
53 |
+
self.expand_k = expand_k
|
54 |
+
self.expand_v = expand_v
|
55 |
+
self.num_heads = num_heads
|
56 |
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
57 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
58 |
+
self.key_dim = int(hidden_size * expand_k)
|
59 |
+
self.value_dim = int(hidden_size * expand_v)
|
60 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
61 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
62 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
63 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
64 |
+
|
65 |
+
self.use_short_conv = use_short_conv
|
66 |
+
self.conv_size = conv_size
|
67 |
+
self.conv_bias = conv_bias
|
68 |
+
|
69 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
70 |
+
|
71 |
+
self.use_output_gate = use_output_gate
|
72 |
+
self.use_norm = use_norm
|
73 |
+
self.scale = scale
|
74 |
+
|
75 |
+
if num_slots is None:
|
76 |
+
num_slots = self.head_k_dim
|
77 |
+
self.num_slots = num_slots
|
78 |
+
|
79 |
+
self.layer_idx = layer_idx
|
80 |
+
|
81 |
+
if layer_idx is None:
|
82 |
+
warnings.warn(
|
83 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
84 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
85 |
+
"when creating this class."
|
86 |
+
)
|
87 |
+
|
88 |
+
self.register_module('feature_map', None)
|
89 |
+
if feature_map == 'swish':
|
90 |
+
self.feature_map = SwishFeatureMap()
|
91 |
+
elif feature_map == 'relu':
|
92 |
+
self.feature_map = ReLUFeatureMap()
|
93 |
+
elif feature_map == 't2r':
|
94 |
+
self.feature_map = T2RFeatureMap(self.head_k_dim, self.head_k_dim)
|
95 |
+
else:
|
96 |
+
raise NotImplementedError(f"Feature map `{feature_map}` is not supported now.")
|
97 |
+
|
98 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
99 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
100 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
|
101 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
|
102 |
+
|
103 |
+
if use_short_conv:
|
104 |
+
self.conv_size = conv_size
|
105 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
106 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
107 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
108 |
+
|
109 |
+
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps)
|
110 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
111 |
+
|
112 |
+
def forward(
|
113 |
+
self,
|
114 |
+
hidden_states: torch.Tensor,
|
115 |
+
attention_mask: Optional[torch.Tensor] = None,
|
116 |
+
past_key_values: Optional[Cache] = None,
|
117 |
+
use_cache: Optional[bool] = False,
|
118 |
+
output_attentions: Optional[bool] = False,
|
119 |
+
**kwargs: Unpack[Dict]
|
120 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
121 |
+
if attention_mask is not None:
|
122 |
+
assert len(attention_mask.shape) == 2, (
|
123 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
124 |
+
"for padding purposes (0 indicating padding). "
|
125 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
126 |
+
)
|
127 |
+
|
128 |
+
# launching the triton kernel for just one token will actually be slower
|
129 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
130 |
+
|
131 |
+
last_state = None
|
132 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
133 |
+
last_state = past_key_values[self.layer_idx]
|
134 |
+
|
135 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
136 |
+
if self.use_short_conv:
|
137 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
138 |
+
if last_state is not None:
|
139 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
140 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
141 |
+
q, conv_state_q = self.q_conv1d(
|
142 |
+
x=self.q_proj(hidden_states),
|
143 |
+
mask=conv_mask,
|
144 |
+
cache=conv_state_q,
|
145 |
+
output_final_state=use_cache,
|
146 |
+
cu_seqlens=cu_seqlens
|
147 |
+
)
|
148 |
+
k, conv_state_k = self.k_conv1d(
|
149 |
+
x=self.k_proj(hidden_states),
|
150 |
+
mask=conv_mask,
|
151 |
+
cache=conv_state_k,
|
152 |
+
output_final_state=use_cache,
|
153 |
+
cu_seqlens=cu_seqlens
|
154 |
+
)
|
155 |
+
v, conv_state_v = self.v_conv1d(
|
156 |
+
x=self.v_proj(hidden_states),
|
157 |
+
mask=conv_mask,
|
158 |
+
cache=conv_state_v,
|
159 |
+
output_final_state=use_cache,
|
160 |
+
cu_seqlens=cu_seqlens
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
q = self.q_proj(hidden_states)
|
164 |
+
k = self.k_proj(hidden_states)
|
165 |
+
v = self.v_proj(hidden_states)
|
166 |
+
f = self.f_proj(hidden_states)
|
167 |
+
|
168 |
+
q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
169 |
+
k = rearrange(k, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
170 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
171 |
+
f = rearrange(f, 'b t (h m) -> b t h m', m=self.num_slots)
|
172 |
+
|
173 |
+
if self.feature_map is not None:
|
174 |
+
q, k = map(lambda x: self.feature_map(x), (q, k))
|
175 |
+
v = F.silu(v)
|
176 |
+
|
177 |
+
f = F.logsigmoid(f) / self.gate_logit_normalizer
|
178 |
+
s = (1 - f.exp()).to(f.dtype)
|
179 |
+
# dealing with left-padding
|
180 |
+
if attention_mask is not None:
|
181 |
+
s = s.mul_(attention_mask[:, -s.shape[1]:, None, None])
|
182 |
+
v = v.mul_(attention_mask[:, -v.shape[1]:, None, None])
|
183 |
+
|
184 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
185 |
+
if mode == 'fused_recurrent':
|
186 |
+
o, recurrent_state = fused_recurrent_gsa(
|
187 |
+
q=q,
|
188 |
+
k=k,
|
189 |
+
v=v,
|
190 |
+
s=s,
|
191 |
+
g=f,
|
192 |
+
initial_state=recurrent_state,
|
193 |
+
output_final_state=use_cache,
|
194 |
+
scale=self.scale,
|
195 |
+
cu_seqlens=cu_seqlens,
|
196 |
+
head_first=False
|
197 |
+
)
|
198 |
+
elif mode == 'chunk':
|
199 |
+
o, recurrent_state = chunk_gsa(
|
200 |
+
q=q,
|
201 |
+
k=k,
|
202 |
+
v=v,
|
203 |
+
s=s,
|
204 |
+
g=f,
|
205 |
+
initial_state=recurrent_state,
|
206 |
+
output_final_state=use_cache,
|
207 |
+
scale=self.scale,
|
208 |
+
cu_seqlens=cu_seqlens,
|
209 |
+
head_first=False
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
213 |
+
|
214 |
+
if past_key_values is not None:
|
215 |
+
past_key_values.update(
|
216 |
+
recurrent_state=recurrent_state,
|
217 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
218 |
+
layer_idx=self.layer_idx,
|
219 |
+
offset=q.shape[1]
|
220 |
+
)
|
221 |
+
|
222 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
223 |
+
o = rms_norm_linear(F.silu(o), self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
224 |
+
return o, None, past_key_values
|
225 |
+
|
226 |
+
def state_size(self, *args, **kwargs) -> int:
|
227 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/hgrn.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823]
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormGated, ShortConvolution
|
15 |
+
from fla.modules.activations import swiglu
|
16 |
+
from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from transformers.processing_utils import Unpack
|
20 |
+
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
|
23 |
+
|
24 |
+
class HGRNAttention(nn.Module):
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
mode: str = 'chunk',
|
29 |
+
hidden_size: int = 1024,
|
30 |
+
expand_ratio: Optional[int] = 1,
|
31 |
+
use_short_conv: bool = False,
|
32 |
+
conv_size: int = 4,
|
33 |
+
conv_bias: bool = False,
|
34 |
+
elementwise_affine: Optional[bool] = True,
|
35 |
+
norm_eps: float = 1e-5,
|
36 |
+
layer_idx: int = None
|
37 |
+
) -> HGRNAttention:
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.mode = mode
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
self.expand_ratio = expand_ratio
|
43 |
+
self.input_dim = int(hidden_size * expand_ratio)
|
44 |
+
|
45 |
+
self.use_short_conv = use_short_conv
|
46 |
+
self.conv_size = conv_size
|
47 |
+
self.conv_bias = conv_bias
|
48 |
+
|
49 |
+
self.layer_idx = layer_idx
|
50 |
+
|
51 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
52 |
+
|
53 |
+
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
54 |
+
self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
55 |
+
self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
56 |
+
|
57 |
+
if use_short_conv:
|
58 |
+
self.conv_size = conv_size
|
59 |
+
self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
60 |
+
self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
61 |
+
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
62 |
+
|
63 |
+
self.g_norm = FusedRMSNormGated(
|
64 |
+
hidden_size=self.input_dim,
|
65 |
+
elementwise_affine=elementwise_affine,
|
66 |
+
eps=norm_eps
|
67 |
+
)
|
68 |
+
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
69 |
+
|
70 |
+
def forward(
|
71 |
+
self,
|
72 |
+
hidden_states: torch.Tensor,
|
73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
74 |
+
past_key_values: Optional[Cache] = None,
|
75 |
+
use_cache: Optional[bool] = False,
|
76 |
+
output_attentions: Optional[bool] = False,
|
77 |
+
lower_bound: Optional[torch.Tensor] = None,
|
78 |
+
**kwargs: Unpack[Dict]
|
79 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
80 |
+
if attention_mask is not None:
|
81 |
+
assert len(attention_mask.shape) == 2, (
|
82 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
83 |
+
"for padding purposes (0 indicating padding). "
|
84 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
85 |
+
)
|
86 |
+
|
87 |
+
# launching the triton kernel for just one token will actually be slower
|
88 |
+
mode = 'fused_recurrent' if not self.training and hidden_states.shape[1] <= 64 else self.mode
|
89 |
+
|
90 |
+
last_state = None
|
91 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
92 |
+
last_state = past_key_values[self.layer_idx]
|
93 |
+
|
94 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
95 |
+
if self.use_short_conv:
|
96 |
+
conv_state_i, conv_state_f = None, None
|
97 |
+
if last_state is not None:
|
98 |
+
conv_state_i, conv_state_f = last_state['conv_state']
|
99 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
100 |
+
i, conv_state_i = self.i_conv1d(
|
101 |
+
x=self.i_proj(hidden_states),
|
102 |
+
mask=conv_mask,
|
103 |
+
cache=conv_state_i,
|
104 |
+
output_final_state=use_cache,
|
105 |
+
cu_seqlens=cu_seqlens
|
106 |
+
)
|
107 |
+
f, conv_state_f = self.f_conv1d(
|
108 |
+
x=self.f_proj(hidden_states),
|
109 |
+
mask=conv_mask,
|
110 |
+
cache=conv_state_f,
|
111 |
+
output_final_state=use_cache,
|
112 |
+
cu_seqlens=cu_seqlens
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
i = self.i_proj(hidden_states)
|
116 |
+
f = self.f_proj(hidden_states)
|
117 |
+
|
118 |
+
# the lower bound for the first layer is zero
|
119 |
+
if lower_bound is None or self.layer_idx == 0:
|
120 |
+
i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f)
|
121 |
+
else:
|
122 |
+
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
123 |
+
i, f = swiglu(i, 1 - g), g.log()
|
124 |
+
|
125 |
+
# dealing with left-padding
|
126 |
+
if attention_mask is not None:
|
127 |
+
i = i.mul_(attention_mask[:, -i.shape[-2]:, None])
|
128 |
+
|
129 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
130 |
+
if mode == 'chunk':
|
131 |
+
if cu_seqlens is not None:
|
132 |
+
raise NotImplementedError("Chunk mode does not support variable-length sequences.")
|
133 |
+
o, recurrent_state = chunk_hgrn(
|
134 |
+
x=i,
|
135 |
+
g=f,
|
136 |
+
initial_state=recurrent_state,
|
137 |
+
output_final_state=use_cache,
|
138 |
+
)
|
139 |
+
elif mode == 'fused_recurrent':
|
140 |
+
o, recurrent_state = fused_recurrent_hgrn(
|
141 |
+
x=i,
|
142 |
+
g=f,
|
143 |
+
initial_state=recurrent_state,
|
144 |
+
output_final_state=use_cache,
|
145 |
+
cu_seqlens=cu_seqlens
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
149 |
+
|
150 |
+
if past_key_values is not None:
|
151 |
+
past_key_values.update(
|
152 |
+
recurrent_state=recurrent_state,
|
153 |
+
conv_state=(conv_state_i, conv_state_f) if self.use_short_conv else None,
|
154 |
+
layer_idx=self.layer_idx,
|
155 |
+
offset=i.shape[2]
|
156 |
+
)
|
157 |
+
|
158 |
+
o = self.g_norm(o, self.g_proj(hidden_states))
|
159 |
+
o = self.o_proj(o)
|
160 |
+
|
161 |
+
return o, None, past_key_values
|
162 |
+
|
163 |
+
def state_size(self, **kwargs) -> int:
|
164 |
+
state_size = self.hidden_size
|
165 |
+
for module in self.children():
|
166 |
+
if isinstance(module, ShortConvolution):
|
167 |
+
state_size += module.state_size
|
168 |
+
return state_size
|
fla/layers/hgrn2.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from fla.modules import RMSNorm, ShortConvolution
|
16 |
+
from fla.modules.activations import swish
|
17 |
+
from fla.modules.layernorm import rms_norm_linear
|
18 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from transformers.processing_utils import Unpack
|
22 |
+
|
23 |
+
from fla.models.utils import Cache
|
24 |
+
|
25 |
+
|
26 |
+
class HGRN2Attention(nn.Module):
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
mode: str = 'chunk',
|
31 |
+
hidden_size: int = 1024,
|
32 |
+
num_heads: Optional[int] = None,
|
33 |
+
expand_ratio: Optional[int] = 128,
|
34 |
+
use_short_conv: bool = False,
|
35 |
+
conv_size: int = 4,
|
36 |
+
conv_bias: bool = False,
|
37 |
+
elementwise_affine: Optional[bool] = True,
|
38 |
+
norm_eps: float = 1e-5,
|
39 |
+
layer_idx: int = None
|
40 |
+
) -> HGRN2Attention:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.mode = mode
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
|
46 |
+
if expand_ratio is None and num_heads is not None:
|
47 |
+
expand_ratio = hidden_size // num_heads
|
48 |
+
elif expand_ratio is not None and num_heads is None:
|
49 |
+
num_heads = hidden_size // expand_ratio
|
50 |
+
elif expand_ratio is None and num_heads is None:
|
51 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self.expand_ratio = expand_ratio
|
54 |
+
|
55 |
+
self.use_short_conv = use_short_conv
|
56 |
+
self.conv_size = conv_size
|
57 |
+
self.conv_bias = conv_bias
|
58 |
+
|
59 |
+
self.forget_dim = int(self.num_heads * self.expand_ratio)
|
60 |
+
self.input_dim = hidden_size
|
61 |
+
self.layer_idx = layer_idx
|
62 |
+
|
63 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
64 |
+
assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
|
65 |
+
assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"
|
66 |
+
|
67 |
+
self.head_f_dim = self.expand_ratio
|
68 |
+
self.head_i_dim = self.hidden_size // num_heads
|
69 |
+
|
70 |
+
self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
71 |
+
self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
72 |
+
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
73 |
+
|
74 |
+
if use_short_conv:
|
75 |
+
self.conv_size = conv_size
|
76 |
+
self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
|
77 |
+
self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
|
78 |
+
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
79 |
+
|
80 |
+
self.g_norm = RMSNorm(hidden_size=self.hidden_size, elementwise_affine=elementwise_affine, eps=norm_eps)
|
81 |
+
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
82 |
+
|
83 |
+
def forward(
|
84 |
+
self,
|
85 |
+
hidden_states: torch.Tensor,
|
86 |
+
attention_mask: Optional[torch.Tensor] = None,
|
87 |
+
past_key_values: Optional[Cache] = None,
|
88 |
+
use_cache: Optional[bool] = False,
|
89 |
+
output_attentions: Optional[bool] = False,
|
90 |
+
lower_bound: Optional[torch.Tensor] = None,
|
91 |
+
**kwargs: Unpack[Dict]
|
92 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
93 |
+
if attention_mask is not None:
|
94 |
+
assert len(attention_mask.shape) == 2, (
|
95 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
96 |
+
"for padding purposes (0 indicating padding). "
|
97 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
98 |
+
)
|
99 |
+
|
100 |
+
# launching the triton kernel for just one token will actually be slower
|
101 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
102 |
+
|
103 |
+
last_state = None
|
104 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
105 |
+
last_state = past_key_values[self.layer_idx]
|
106 |
+
|
107 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
108 |
+
if self.use_short_conv:
|
109 |
+
conv_state_q, conv_state_f, conv_state_i = None, None, None
|
110 |
+
if last_state is not None:
|
111 |
+
conv_state_q, conv_state_f, conv_state_i = last_state['conv_state']
|
112 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
113 |
+
q, conv_state_q = self.q_conv1d(
|
114 |
+
x=self.q_proj(hidden_states),
|
115 |
+
mask=conv_mask,
|
116 |
+
cache=conv_state_q,
|
117 |
+
output_final_state=use_cache,
|
118 |
+
cu_seqlens=cu_seqlens
|
119 |
+
)
|
120 |
+
f, conv_state_f = self.f_conv1d(
|
121 |
+
x=self.f_proj(hidden_states),
|
122 |
+
mask=conv_mask,
|
123 |
+
cache=conv_state_f,
|
124 |
+
output_final_state=use_cache,
|
125 |
+
cu_seqlens=cu_seqlens
|
126 |
+
)
|
127 |
+
i, conv_state_i = self.i_conv1d(
|
128 |
+
x=self.i_proj(hidden_states),
|
129 |
+
mask=conv_mask,
|
130 |
+
cache=conv_state_i,
|
131 |
+
output_final_state=use_cache,
|
132 |
+
cu_seqlens=cu_seqlens
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
q = self.q_proj(hidden_states)
|
136 |
+
f = self.f_proj(hidden_states)
|
137 |
+
i = self.i_proj(hidden_states)
|
138 |
+
|
139 |
+
# dealing with left-padding
|
140 |
+
if attention_mask is not None:
|
141 |
+
i = i.mul_(attention_mask[:, -i.shape[-2]:, None])
|
142 |
+
|
143 |
+
q = swish(q)
|
144 |
+
|
145 |
+
# improve precision
|
146 |
+
f = f.float()
|
147 |
+
|
148 |
+
# the lower bound for the first layer is zero
|
149 |
+
if lower_bound is None or self.layer_idx == 0:
|
150 |
+
k, g = 1 - f.sigmoid(), F.logsigmoid(f)
|
151 |
+
else:
|
152 |
+
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
153 |
+
k, g = 1 - g, g.log()
|
154 |
+
|
155 |
+
q, k, g = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k.to(i), g))
|
156 |
+
i = rearrange(i, '... (h d) -> ... h d', d=self.head_i_dim)
|
157 |
+
|
158 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
159 |
+
if mode == 'fused_recurrent':
|
160 |
+
o, recurrent_state = fused_recurrent_gla(
|
161 |
+
q=q,
|
162 |
+
k=k,
|
163 |
+
v=i,
|
164 |
+
gk=g,
|
165 |
+
initial_state=recurrent_state,
|
166 |
+
output_final_state=use_cache,
|
167 |
+
cu_seqlens=cu_seqlens,
|
168 |
+
head_first=False
|
169 |
+
)
|
170 |
+
elif mode == 'fused_chunk':
|
171 |
+
o, recurrent_state = fused_chunk_gla(
|
172 |
+
q=q,
|
173 |
+
k=k,
|
174 |
+
v=i,
|
175 |
+
g=g,
|
176 |
+
initial_state=recurrent_state,
|
177 |
+
output_final_state=use_cache,
|
178 |
+
head_first=False
|
179 |
+
)
|
180 |
+
elif mode == 'chunk':
|
181 |
+
o, recurrent_state = chunk_gla(
|
182 |
+
q=q,
|
183 |
+
k=k,
|
184 |
+
v=i,
|
185 |
+
g=g,
|
186 |
+
initial_state=recurrent_state,
|
187 |
+
output_final_state=use_cache,
|
188 |
+
cu_seqlens=cu_seqlens,
|
189 |
+
head_first=False
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
193 |
+
|
194 |
+
if past_key_values is not None:
|
195 |
+
past_key_values.update(
|
196 |
+
recurrent_state=recurrent_state,
|
197 |
+
conv_state=(conv_state_q, conv_state_f, conv_state_i) if self.use_short_conv else None,
|
198 |
+
layer_idx=self.layer_idx,
|
199 |
+
offset=q.shape[1]
|
200 |
+
)
|
201 |
+
|
202 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
203 |
+
o = rms_norm_linear(o, self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
204 |
+
return o, None, past_key_values
|
205 |
+
|
206 |
+
def state_size(self, **kwargs) -> int:
|
207 |
+
state_size = self.forget_dim * self.head_i_dim
|
208 |
+
for module in self.children():
|
209 |
+
if isinstance(module, ShortConvolution):
|
210 |
+
state_size += module.state_size
|
211 |
+
return state_size
|
fla/layers/lightnet.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# ["You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet"](https://arxiv.org/abs/2405.21022)
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from fla.modules import FusedRMSNormGated, ShortConvolution
|
16 |
+
from fla.modules.fused_norm_gate import rms_norm_swish_gate_linear
|
17 |
+
from fla.ops.gla import chunk_gla, fused_recurrent_gla
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from transformers.processing_utils import Unpack
|
21 |
+
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
|
24 |
+
|
25 |
+
class LightNetAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
mode: str = 'chunk',
|
30 |
+
hidden_size: int = 1024,
|
31 |
+
num_heads: Optional[int] = None,
|
32 |
+
expand_ratio: Optional[int] = 128,
|
33 |
+
use_short_conv: bool = False,
|
34 |
+
conv_size: int = 4,
|
35 |
+
conv_bias: bool = False,
|
36 |
+
gate_low_rank_dim: int = 128,
|
37 |
+
elementwise_affine: Optional[bool] = True,
|
38 |
+
norm_eps: float = 1e-5,
|
39 |
+
layer_idx: int = None
|
40 |
+
) -> LightNetAttention:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.mode = mode
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
|
46 |
+
if expand_ratio is None and num_heads is not None:
|
47 |
+
expand_ratio = hidden_size // num_heads
|
48 |
+
elif expand_ratio is not None and num_heads is None:
|
49 |
+
num_heads = hidden_size // expand_ratio
|
50 |
+
elif expand_ratio is None and num_heads is None:
|
51 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self.expand_ratio = expand_ratio
|
54 |
+
|
55 |
+
self.use_short_conv = use_short_conv
|
56 |
+
self.conv_size = conv_size
|
57 |
+
self.conv_bias = conv_bias
|
58 |
+
|
59 |
+
self.key_dim = int(self.num_heads * self.expand_ratio)
|
60 |
+
self.value_dim = hidden_size
|
61 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
62 |
+
self.layer_idx = layer_idx
|
63 |
+
|
64 |
+
assert mode in ['chunk', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
65 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
66 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
67 |
+
|
68 |
+
self.head_f_dim = self.expand_ratio
|
69 |
+
self.head_i_dim = self.hidden_size // num_heads
|
70 |
+
|
71 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
72 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
73 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
74 |
+
|
75 |
+
if use_short_conv:
|
76 |
+
self.conv_size = conv_size
|
77 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
|
78 |
+
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
|
79 |
+
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation=None)
|
80 |
+
|
81 |
+
self.g_proj = nn.Sequential(
|
82 |
+
nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
83 |
+
nn.Linear(gate_low_rank_dim, hidden_size, bias=False)
|
84 |
+
)
|
85 |
+
self.g_norm = FusedRMSNormGated(
|
86 |
+
hidden_size=hidden_size,
|
87 |
+
elementwise_affine=elementwise_affine,
|
88 |
+
eps=norm_eps
|
89 |
+
)
|
90 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
hidden_states: torch.Tensor,
|
95 |
+
attention_mask: Optional[torch.Tensor] = None,
|
96 |
+
past_key_values: Optional[Cache] = None,
|
97 |
+
use_cache: Optional[bool] = False,
|
98 |
+
output_attentions: Optional[bool] = False,
|
99 |
+
**kwargs: Unpack[Dict]
|
100 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
101 |
+
if attention_mask is not None:
|
102 |
+
assert len(attention_mask.shape) == 2, (
|
103 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
104 |
+
"for padding purposes (0 indicating padding). "
|
105 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
106 |
+
)
|
107 |
+
|
108 |
+
# launching the triton kernel for just one token will actually be slower
|
109 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
110 |
+
|
111 |
+
last_state = None
|
112 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
113 |
+
last_state = past_key_values[self.layer_idx]
|
114 |
+
|
115 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
116 |
+
if self.use_short_conv:
|
117 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
118 |
+
if last_state is not None:
|
119 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
120 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
121 |
+
q, conv_state_q = self.q_conv1d(
|
122 |
+
x=self.q_proj(hidden_states),
|
123 |
+
mask=conv_mask,
|
124 |
+
cache=conv_state_q,
|
125 |
+
output_final_state=use_cache,
|
126 |
+
cu_seqlens=cu_seqlens
|
127 |
+
)
|
128 |
+
k, conv_state_k = self.k_conv1d(
|
129 |
+
x=self.k_proj(hidden_states),
|
130 |
+
mask=conv_mask,
|
131 |
+
cache=conv_state_k,
|
132 |
+
output_final_state=use_cache,
|
133 |
+
cu_seqlens=cu_seqlens
|
134 |
+
)
|
135 |
+
v, conv_state_v = self.v_conv1d(
|
136 |
+
x=self.v_proj(hidden_states),
|
137 |
+
mask=conv_mask,
|
138 |
+
cache=conv_state_v,
|
139 |
+
output_final_state=use_cache,
|
140 |
+
cu_seqlens=cu_seqlens
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
q = self.q_proj(hidden_states)
|
144 |
+
k = self.k_proj(hidden_states)
|
145 |
+
v = self.v_proj(hidden_states)
|
146 |
+
|
147 |
+
# dealing with left-padding
|
148 |
+
if attention_mask is not None:
|
149 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
150 |
+
|
151 |
+
q = F.silu(q)
|
152 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k))
|
153 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_i_dim)
|
154 |
+
# TODO: this 2 steps took huge amount of time, which should be optimized
|
155 |
+
z = k.float().logcumsumexp(1)
|
156 |
+
|
157 |
+
if cu_seqlens is not None:
|
158 |
+
raise NotImplementedError("LightNet does not support variable-length sequences for now.")
|
159 |
+
k, g = torch.exp(k - z).to(k.dtype), (torch.cat((z[:, :1], z[:, :-1]), 1) - z).to(k.dtype)
|
160 |
+
|
161 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
162 |
+
if mode == 'fused_recurrent':
|
163 |
+
o, recurrent_state = fused_recurrent_gla(
|
164 |
+
q=q,
|
165 |
+
k=k,
|
166 |
+
v=v,
|
167 |
+
gk=g,
|
168 |
+
initial_state=recurrent_state,
|
169 |
+
output_final_state=use_cache,
|
170 |
+
cu_seqlens=cu_seqlens,
|
171 |
+
head_first=False
|
172 |
+
)
|
173 |
+
elif mode == 'chunk':
|
174 |
+
o, recurrent_state = chunk_gla(
|
175 |
+
q=q,
|
176 |
+
k=k,
|
177 |
+
v=v,
|
178 |
+
g=g,
|
179 |
+
initial_state=recurrent_state,
|
180 |
+
output_final_state=use_cache,
|
181 |
+
cu_seqlens=cu_seqlens,
|
182 |
+
head_first=False
|
183 |
+
)
|
184 |
+
else:
|
185 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
186 |
+
|
187 |
+
if past_key_values is not None:
|
188 |
+
past_key_values.update(
|
189 |
+
recurrent_state=recurrent_state,
|
190 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
191 |
+
layer_idx=self.layer_idx,
|
192 |
+
offset=q.shape[1]
|
193 |
+
)
|
194 |
+
|
195 |
+
o = rms_norm_swish_gate_linear(
|
196 |
+
rearrange(o, 'b t h d -> b t (h d)'),
|
197 |
+
self.g_proj(hidden_states),
|
198 |
+
self.g_norm.weight,
|
199 |
+
self.g_norm.bias,
|
200 |
+
self.o_proj.weight,
|
201 |
+
self.o_proj.bias
|
202 |
+
)
|
203 |
+
return o, None, past_key_values
|
204 |
+
|
205 |
+
def state_size(self, **kwargs) -> int:
|
206 |
+
state_size = self.key_dim * self.head_i_dim
|
207 |
+
for module in self.children():
|
208 |
+
if isinstance(module, ShortConvolution):
|
209 |
+
state_size += module.state_size
|
210 |
+
return state_size
|
fla/layers/linear_attn.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
|
11 |
+
from fla.modules import RMSNorm
|
12 |
+
from fla.modules.feature_map import DPFPFeatureMap, HadamardFeatureMap, HedgehogFeatureMap, T2RFeatureMap
|
13 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn, fused_recurrent_linear_attn
|
14 |
+
|
15 |
+
|
16 |
+
class LinearAttention(nn.Module):
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
mode: str = 'chunk',
|
21 |
+
hidden_size: str = 1024,
|
22 |
+
expand_k: int = 1.0,
|
23 |
+
expand_v: int = 1.0,
|
24 |
+
num_heads: int = 8,
|
25 |
+
num_kv_heads: Optional[int] = None,
|
26 |
+
feature_map: str = 'elementwise_product',
|
27 |
+
tie_feature_map_qk: bool = False,
|
28 |
+
output_norm: str = 'rmsnorm',
|
29 |
+
norm_q: bool = False,
|
30 |
+
norm_k: bool = False,
|
31 |
+
do_feature_map_norm: bool = False,
|
32 |
+
elementwise_affine: bool = True,
|
33 |
+
norm_eps: float = 1e-5,
|
34 |
+
**kwargs
|
35 |
+
):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
self.hidden_size = hidden_size
|
39 |
+
self.mode = mode
|
40 |
+
self.num_heads = num_heads
|
41 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
42 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
43 |
+
self.key_dim = int(hidden_size * expand_k)
|
44 |
+
self.value_dim = int(hidden_size * expand_v)
|
45 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
46 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
47 |
+
|
48 |
+
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
49 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
50 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
51 |
+
|
52 |
+
self.head_k_dim = self.key_dim // num_heads
|
53 |
+
self.head_v_dim = self.value_dim // num_heads
|
54 |
+
self.do_feature_map_norm = do_feature_map_norm
|
55 |
+
|
56 |
+
if feature_map == 'hedgehog':
|
57 |
+
if tie_feature_map_qk:
|
58 |
+
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_k_dim)
|
59 |
+
else:
|
60 |
+
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_k_dim)
|
61 |
+
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_k_dim)
|
62 |
+
|
63 |
+
elif feature_map == 't2r':
|
64 |
+
if tie_feature_map_qk:
|
65 |
+
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_k_dim)
|
66 |
+
else:
|
67 |
+
self.feature_map_q = T2RFeatureMap(head_dim=self.head_k_dim)
|
68 |
+
self.feature_map_k = T2RFeatureMap(head_dim=self.head_k_dim)
|
69 |
+
|
70 |
+
elif feature_map == 'elementwise_product':
|
71 |
+
if tie_feature_map_qk:
|
72 |
+
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_k_dim)
|
73 |
+
else:
|
74 |
+
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_k_dim)
|
75 |
+
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_k_dim)
|
76 |
+
|
77 |
+
elif feature_map == 'dpfp':
|
78 |
+
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_k_dim)
|
79 |
+
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_k_dim)
|
80 |
+
|
81 |
+
elif feature_map == 'elu':
|
82 |
+
def elu(x):
|
83 |
+
return F.elu(x) + 1
|
84 |
+
self.feature_map_q = elu
|
85 |
+
self.feature_map_k = elu
|
86 |
+
|
87 |
+
elif feature_map == 'relu':
|
88 |
+
self.feature_map_q = nn.ReLU()
|
89 |
+
self.feature_map_k = nn.ReLU()
|
90 |
+
|
91 |
+
elif feature_map == 'identity':
|
92 |
+
self.feature_map_q = nn.Identity()
|
93 |
+
self.feature_map_k = nn.Identity()
|
94 |
+
else:
|
95 |
+
raise NotImplementedError(f"Not supported feature map `{feature_map}`.")
|
96 |
+
|
97 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
98 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
99 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
100 |
+
|
101 |
+
if output_norm == 'rmsnorm':
|
102 |
+
self.norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
103 |
+
elif output_norm == 'identity':
|
104 |
+
self.norm = nn.Identity()
|
105 |
+
else:
|
106 |
+
raise NotImplementedError(f"Not supported output norm `{output_norm}`.")
|
107 |
+
|
108 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
109 |
+
|
110 |
+
self.norm_q = norm_q
|
111 |
+
self.norm_k = norm_k
|
112 |
+
|
113 |
+
def forward(
|
114 |
+
self,
|
115 |
+
hidden_states: torch.Tensor,
|
116 |
+
**kwargs
|
117 |
+
) -> torch.Tensor:
|
118 |
+
mode = self.mode
|
119 |
+
q = self.q_proj(hidden_states)
|
120 |
+
k = self.k_proj(hidden_states)
|
121 |
+
v = self.v_proj(hidden_states)
|
122 |
+
|
123 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_k_dim)
|
124 |
+
if self.num_kv_groups > 1:
|
125 |
+
k = repeat(k, '... (h d) -> ... (h g) d', d=self.head_k_dim, g=self.num_kv_groups)
|
126 |
+
v = repeat(v, '... (h d) -> ... (h g) d', d=self.head_v_dim, g=self.num_kv_groups)
|
127 |
+
else:
|
128 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_k_dim)
|
129 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
130 |
+
|
131 |
+
q = self.feature_map_q(q)
|
132 |
+
k = self.feature_map_k(k)
|
133 |
+
|
134 |
+
if self.norm_q:
|
135 |
+
q = q / (q.sum(-1, True) + 1e-4)
|
136 |
+
if self.norm_k:
|
137 |
+
k = k / (k.sum(-1, True) + 1e-4)
|
138 |
+
|
139 |
+
if mode == 'chunk':
|
140 |
+
o, final_state = chunk_linear_attn(
|
141 |
+
q=q,
|
142 |
+
k=k,
|
143 |
+
v=v,
|
144 |
+
normalize=self.do_feature_map_norm,
|
145 |
+
head_first=False
|
146 |
+
)
|
147 |
+
elif mode == 'fused_chunk':
|
148 |
+
o, final_state = fused_chunk_linear_attn(
|
149 |
+
q=q,
|
150 |
+
k=k,
|
151 |
+
v=v,
|
152 |
+
normalize=self.do_feature_map_norm,
|
153 |
+
)
|
154 |
+
elif mode == 'fused_recurrent':
|
155 |
+
o, final_state = fused_recurrent_linear_attn(
|
156 |
+
q=q,
|
157 |
+
k=k,
|
158 |
+
v=v,
|
159 |
+
normalize=self.do_feature_map_norm,
|
160 |
+
)
|
161 |
+
else:
|
162 |
+
raise NotImplementedError
|
163 |
+
o = self.norm(o)
|
164 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
165 |
+
o = self.o_proj(o)
|
166 |
+
return o
|
fla/layers/multiscale_retention.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
from transformers.activations import ACT2FN
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
14 |
+
from fla.modules.rotary import RotaryEmbedding
|
15 |
+
from fla.ops.retention import chunk_retention, fused_chunk_retention, fused_recurrent_retention, parallel_retention
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from fla.models.utils import Cache
|
19 |
+
|
20 |
+
|
21 |
+
class MultiScaleRetention(nn.Module):
|
22 |
+
r"""
|
23 |
+
The layer implementaion for [Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/pdf/2307.08621.pdf). # noqa
|
24 |
+
|
25 |
+
Args:
|
26 |
+
mode (str, Optional):
|
27 |
+
Which Retention kernel to use.
|
28 |
+
Currently available: `chunk`, `fused_recurrent`, `parallel`, and `fused_chunk`.
|
29 |
+
Default: `chunk`.
|
30 |
+
hidden_size (int, Optional):
|
31 |
+
The hidden size of the input. Default: 1024.
|
32 |
+
expand_k (float, Optional):
|
33 |
+
The expansion ratio for the key dim. Default: 1.0.
|
34 |
+
expand_v (float, Optional):
|
35 |
+
The expansion ratio for the value dim. Default: 2.0.
|
36 |
+
num_heads (int, Optional):
|
37 |
+
The number of heads. Default: 8.
|
38 |
+
num_kv_heads (int, Optional):
|
39 |
+
The number of key/value heads, used for MQA. Default: None.
|
40 |
+
feature_map (str, Optional):
|
41 |
+
Feature map function applied to queries/keys. Default: None.
|
42 |
+
use_short_conv (bool, Optional):
|
43 |
+
Whether to use short convolutions. Default: `False`.
|
44 |
+
conv_size (int, Optional):
|
45 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
46 |
+
conv_bias (bool, Optional):
|
47 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
48 |
+
use_output_gate (bool, Optional):
|
49 |
+
Whether to use output gate. Default: `True`.
|
50 |
+
gate_fn (str, Optional):
|
51 |
+
The activation function for the output gate. Default: `swish`.
|
52 |
+
elementwise_affine (bool, Optional):
|
53 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
54 |
+
norm_eps (float, Optional):
|
55 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
56 |
+
fuse_norm (bool, Optional):
|
57 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
58 |
+
layer_idx (int, Optional):
|
59 |
+
The index of the layer. Default: None.
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
mode: str = 'chunk',
|
65 |
+
hidden_size: int = 1024,
|
66 |
+
expand_k: float = 1.0,
|
67 |
+
expand_v: float = 2.0,
|
68 |
+
num_heads: int = 8,
|
69 |
+
num_kv_heads: Optional[int] = None,
|
70 |
+
feature_map: Optional[str] = None,
|
71 |
+
use_short_conv: bool = False,
|
72 |
+
conv_size: int = 4,
|
73 |
+
conv_bias: bool = False,
|
74 |
+
use_output_gate: bool = True,
|
75 |
+
gate_fn: str = 'swish',
|
76 |
+
elementwise_affine: Optional[bool] = True,
|
77 |
+
norm_eps: float = 1e-5,
|
78 |
+
fuse_norm: bool = True,
|
79 |
+
layer_idx: int = None,
|
80 |
+
**kwargs
|
81 |
+
) -> MultiScaleRetention:
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.mode = mode
|
85 |
+
self.hidden_size = hidden_size
|
86 |
+
self.expand_k = expand_k
|
87 |
+
self.expand_v = expand_v
|
88 |
+
self.num_heads = num_heads
|
89 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
90 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
91 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
92 |
+
|
93 |
+
self.use_short_conv = use_short_conv
|
94 |
+
self.conv_size = conv_size
|
95 |
+
self.conv_bias = conv_bias
|
96 |
+
self.use_output_gate = use_output_gate
|
97 |
+
|
98 |
+
self.key_dim = int(hidden_size * expand_k)
|
99 |
+
self.value_dim = int(hidden_size * expand_v)
|
100 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
101 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
102 |
+
self.layer_idx = layer_idx
|
103 |
+
|
104 |
+
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
105 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
106 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
107 |
+
|
108 |
+
self.head_k_dim = self.key_dim // num_heads
|
109 |
+
self.head_v_dim = self.value_dim // num_heads
|
110 |
+
|
111 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
112 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
113 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
114 |
+
if self.use_output_gate:
|
115 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
116 |
+
|
117 |
+
if use_short_conv:
|
118 |
+
self.conv_size = conv_size
|
119 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
120 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
121 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
122 |
+
|
123 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
124 |
+
|
125 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
126 |
+
self.g_norm_swish_gate = FusedRMSNormGated(
|
127 |
+
hidden_size=self.head_v_dim,
|
128 |
+
elementwise_affine=elementwise_affine,
|
129 |
+
eps=norm_eps
|
130 |
+
)
|
131 |
+
self.fuse_norm_and_gate = True
|
132 |
+
else:
|
133 |
+
self.fuse_norm_and_gate = False
|
134 |
+
self.g_norm = RMSNorm(
|
135 |
+
hidden_size=self.head_v_dim,
|
136 |
+
elementwise_affine=elementwise_affine,
|
137 |
+
eps=norm_eps
|
138 |
+
)
|
139 |
+
self.gate_fn = ACT2FN[gate_fn]
|
140 |
+
|
141 |
+
# TODO: fix this issue
|
142 |
+
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py#L180
|
143 |
+
# Ideally, we would want to support arbitrary d_head_qk
|
144 |
+
assert self.head_k_dim <= 256, "head_k_dim must be less than or equal to 256"
|
145 |
+
self.rotary = RotaryEmbedding(dim=self.head_k_dim)
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
hidden_states: torch.Tensor,
|
150 |
+
attention_mask: Optional[torch.Tensor] = None,
|
151 |
+
past_key_values: Optional[Cache] = None,
|
152 |
+
use_cache: Optional[bool] = False,
|
153 |
+
output_attentions: Optional[bool] = False,
|
154 |
+
**kwargs
|
155 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
156 |
+
if attention_mask is not None:
|
157 |
+
assert len(attention_mask.shape) == 2, (
|
158 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
159 |
+
"for padding purposes (0 indicating padding). "
|
160 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
161 |
+
)
|
162 |
+
|
163 |
+
# launching the triton kernel for just one token will actually be slower
|
164 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
165 |
+
|
166 |
+
last_state = None
|
167 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
168 |
+
last_state = past_key_values[self.layer_idx]
|
169 |
+
|
170 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
171 |
+
if self.use_short_conv:
|
172 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
173 |
+
if last_state is not None:
|
174 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
175 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
176 |
+
q, conv_state_q = self.q_conv1d(
|
177 |
+
x=self.q_proj(hidden_states),
|
178 |
+
mask=conv_mask,
|
179 |
+
cache=conv_state_q,
|
180 |
+
output_final_state=use_cache,
|
181 |
+
cu_seqlens=cu_seqlens
|
182 |
+
)
|
183 |
+
k, conv_state_k = self.k_conv1d(
|
184 |
+
x=self.k_proj(hidden_states),
|
185 |
+
mask=conv_mask,
|
186 |
+
cache=conv_state_k,
|
187 |
+
output_final_state=use_cache,
|
188 |
+
cu_seqlens=cu_seqlens
|
189 |
+
)
|
190 |
+
v, conv_state_v = self.v_conv1d(
|
191 |
+
x=self.v_proj(hidden_states),
|
192 |
+
mask=conv_mask,
|
193 |
+
cache=conv_state_v,
|
194 |
+
output_final_state=use_cache,
|
195 |
+
cu_seqlens=cu_seqlens
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
q = self.q_proj(hidden_states)
|
199 |
+
k = self.k_proj(hidden_states)
|
200 |
+
v = self.v_proj(hidden_states)
|
201 |
+
|
202 |
+
# dealing with left-padding
|
203 |
+
if attention_mask is not None:
|
204 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
205 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_k_dim)
|
206 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_k_dim)
|
207 |
+
if self.feature_map_fn is not None:
|
208 |
+
q, k = map(self.feature_map_fn, (q, k))
|
209 |
+
|
210 |
+
seqlen_offset, max_seqlen = 0, q.shape[1]
|
211 |
+
if past_key_values is not None:
|
212 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
213 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
214 |
+
|
215 |
+
if attention_mask is not None:
|
216 |
+
# to deliminate the offsets of padding tokens
|
217 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
218 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
219 |
+
|
220 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
221 |
+
|
222 |
+
if self.num_kv_groups > 1:
|
223 |
+
k = repeat(k, 'b t h d -> b t (h g) d', g=self.num_kv_groups)
|
224 |
+
v = repeat(v, 'b t (h d) -> b t (h g) d', d=self.head_v_dim, g=self.num_kv_groups)
|
225 |
+
else:
|
226 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
227 |
+
|
228 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
229 |
+
if mode == 'chunk':
|
230 |
+
o, recurrent_state = chunk_retention(
|
231 |
+
q=q,
|
232 |
+
k=k,
|
233 |
+
v=v,
|
234 |
+
initial_state=recurrent_state,
|
235 |
+
output_final_state=use_cache,
|
236 |
+
cu_seqlens=cu_seqlens,
|
237 |
+
head_first=False
|
238 |
+
)
|
239 |
+
elif mode == 'fused_chunk':
|
240 |
+
o, recurrent_state = fused_chunk_retention(
|
241 |
+
q=q,
|
242 |
+
k=k,
|
243 |
+
v=v,
|
244 |
+
initial_state=recurrent_state,
|
245 |
+
output_final_state=use_cache,
|
246 |
+
cu_seqlens=cu_seqlens,
|
247 |
+
head_first=False
|
248 |
+
)
|
249 |
+
elif mode == 'parallel':
|
250 |
+
o, recurrent_state = parallel_retention(
|
251 |
+
q=q,
|
252 |
+
k=k,
|
253 |
+
v=v,
|
254 |
+
cu_seqlens=cu_seqlens,
|
255 |
+
head_first=False
|
256 |
+
)
|
257 |
+
elif mode == 'fused_recurrent':
|
258 |
+
o, recurrent_state = fused_recurrent_retention(
|
259 |
+
q=q,
|
260 |
+
k=k,
|
261 |
+
v=v,
|
262 |
+
initial_state=recurrent_state,
|
263 |
+
output_final_state=use_cache,
|
264 |
+
cu_seqlens=cu_seqlens,
|
265 |
+
head_first=False
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
269 |
+
|
270 |
+
if past_key_values is not None:
|
271 |
+
past_key_values.update(
|
272 |
+
recurrent_state=recurrent_state,
|
273 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
274 |
+
layer_idx=self.layer_idx,
|
275 |
+
offset=q.shape[1]
|
276 |
+
)
|
277 |
+
|
278 |
+
if self.use_output_gate:
|
279 |
+
g = self.g_proj(hidden_states)
|
280 |
+
if self.fuse_norm_and_gate:
|
281 |
+
g = rearrange(g, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
282 |
+
o = self.g_norm_swish_gate(o, g)
|
283 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
284 |
+
else:
|
285 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
286 |
+
o = o * self.gate_fn(g)
|
287 |
+
else:
|
288 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
289 |
+
o = self.o_proj(o)
|
290 |
+
|
291 |
+
return o, None, past_key_values
|
292 |
+
|
293 |
+
def state_size(self, **kwargs) -> int:
|
294 |
+
state_size = self.key_dim * self.head_v_dim
|
295 |
+
for module in self.children():
|
296 |
+
if isinstance(module, ShortConvolution):
|
297 |
+
state_size += module.state_size
|
298 |
+
return state_size
|
fla/layers/nsa.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from fla.modules import RotaryEmbedding
|
14 |
+
from fla.ops.nsa.parallel import parallel_nsa
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from fla.models.utils import Cache
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
class NativeSparseAttention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
hidden_size: int = 2048,
|
27 |
+
num_heads: int = 64,
|
28 |
+
num_kv_heads: Optional[int] = 4,
|
29 |
+
head_dim: int = 64,
|
30 |
+
qkv_bias: bool = False,
|
31 |
+
block_size: Optional[int] = 64,
|
32 |
+
block_counts: Optional[Union[torch.LongTensor, int]] = 16,
|
33 |
+
window_size: Optional[int] = 512,
|
34 |
+
rope_theta: Optional[float] = 10000.,
|
35 |
+
max_position_embeddings: Optional[int] = None,
|
36 |
+
layer_idx: int = None
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.num_heads = num_heads
|
42 |
+
if num_kv_heads is None:
|
43 |
+
self.num_kv_heads = self.num_heads
|
44 |
+
else:
|
45 |
+
self.num_kv_heads = num_kv_heads
|
46 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
47 |
+
self.head_dim = head_dim
|
48 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
49 |
+
self.qkv_bias = qkv_bias
|
50 |
+
|
51 |
+
self.block_size = block_size
|
52 |
+
self.block_counts = block_counts
|
53 |
+
self.window_size = window_size
|
54 |
+
self.rope_theta = rope_theta
|
55 |
+
self.max_position_embeddings = max_position_embeddings
|
56 |
+
self.layer_idx = layer_idx
|
57 |
+
|
58 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.qkv_bias)
|
59 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
60 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
61 |
+
self.g_proj = nn.Linear(self.hidden_size, self.num_heads * 3, bias=False)
|
62 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
63 |
+
|
64 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
hidden_states: torch.Tensor,
|
69 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
70 |
+
past_key_values: Optional[Cache] = None,
|
71 |
+
output_attentions: bool = False,
|
72 |
+
use_cache: bool = False,
|
73 |
+
**kwargs,
|
74 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
75 |
+
if attention_mask is not None:
|
76 |
+
assert len(attention_mask.shape) == 2, (
|
77 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
78 |
+
"for padding purposes (0 indicating padding). "
|
79 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
80 |
+
)
|
81 |
+
|
82 |
+
batch_size, seq_len, _ = hidden_states.size()
|
83 |
+
|
84 |
+
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
85 |
+
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
86 |
+
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', d=self.head_dim)
|
87 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=3)
|
88 |
+
g_cmp, g_slc, g_swa = g.sigmoid().unbind(-1)
|
89 |
+
|
90 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
91 |
+
|
92 |
+
seqlen_offset, max_seqlen = 0, seq_len
|
93 |
+
if past_key_values is not None:
|
94 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
95 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
96 |
+
|
97 |
+
if attention_mask is not None:
|
98 |
+
# to deliminate the offsets of padding tokens
|
99 |
+
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
100 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
101 |
+
|
102 |
+
if self.max_position_embeddings is not None:
|
103 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
104 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset, max_seqlen=max_seqlen, cu_seqlens=cu_seqlens)
|
105 |
+
|
106 |
+
if past_key_values is not None:
|
107 |
+
cache_has_content = past_key_values.get_seq_length(self.layer_idx) > 0
|
108 |
+
k_cached, v_cached = past_key_values.update(
|
109 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
110 |
+
layer_idx=self.layer_idx,
|
111 |
+
offset=seq_len,
|
112 |
+
cache_kwargs=dict(window_size=self.window_size)
|
113 |
+
)['attn_state']
|
114 |
+
if cache_has_content:
|
115 |
+
k, v = k_cached, v_cached
|
116 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
117 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
118 |
+
|
119 |
+
o = parallel_nsa(
|
120 |
+
q=q,
|
121 |
+
k=k,
|
122 |
+
v=v,
|
123 |
+
g_cmp=g_cmp,
|
124 |
+
g_slc=g_slc,
|
125 |
+
g_swa=g_swa,
|
126 |
+
block_size=self.block_size,
|
127 |
+
block_counts=self.block_counts,
|
128 |
+
window_size=self.window_size,
|
129 |
+
cu_seqlens=cu_seqlens,
|
130 |
+
head_first=False
|
131 |
+
)
|
132 |
+
o = o.reshape(batch_size, seq_len, -1)
|
133 |
+
o = self.o_proj(o)
|
134 |
+
|
135 |
+
if not output_attentions:
|
136 |
+
attentions = None
|
137 |
+
|
138 |
+
return o, attentions, past_key_values
|
fla/layers/rebased.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
from fla.modules.feature_map import RebasedFeatureMap
|
17 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
18 |
+
from fla.ops.rebased import parallel_rebased
|
19 |
+
|
20 |
+
|
21 |
+
class ReBasedLinearAttention(nn.Module):
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
hidden_size: int,
|
26 |
+
l_max: int = 2048,
|
27 |
+
feature_dim: int = 16,
|
28 |
+
num_key_value_heads: int = 16,
|
29 |
+
num_heads: int = 16,
|
30 |
+
use_gamma: Optional[bool] = True,
|
31 |
+
use_beta: Optional[bool] = True,
|
32 |
+
normalize: Optional[bool] = True,
|
33 |
+
causal: bool = True,
|
34 |
+
eps: float = 1e-5,
|
35 |
+
mode: str = "parallel",
|
36 |
+
layer_idx: Optional[int] = None,
|
37 |
+
**kwargs
|
38 |
+
) -> ReBasedLinearAttention:
|
39 |
+
super().__init__()
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.l_max = l_max
|
42 |
+
self.mode = mode
|
43 |
+
assert self.mode in ["fused_chunk", "parallel", 'chunk']
|
44 |
+
|
45 |
+
self.feature_dim = feature_dim
|
46 |
+
self.num_key_value_heads = num_key_value_heads
|
47 |
+
self.num_heads = num_heads
|
48 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
49 |
+
self.use_gamma = use_gamma
|
50 |
+
self.use_beta = use_beta
|
51 |
+
self.normalize = normalize
|
52 |
+
self.causal = causal
|
53 |
+
self.eps = eps
|
54 |
+
self.mode = mode
|
55 |
+
self.layer_idx = layer_idx
|
56 |
+
|
57 |
+
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
|
58 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
59 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
60 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
61 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
62 |
+
self.dropout = nn.Identity()
|
63 |
+
|
64 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
65 |
+
mode = self.mode
|
66 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
67 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", d=self.head_dim), [q, k, v])
|
68 |
+
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
|
69 |
+
if mode == "fused_chunk":
|
70 |
+
o = fused_chunk_linear_attn(
|
71 |
+
q=q,
|
72 |
+
k=k,
|
73 |
+
v=v,
|
74 |
+
normalize=True,
|
75 |
+
scale=1,
|
76 |
+
head_first=False
|
77 |
+
)
|
78 |
+
elif mode == 'chunk':
|
79 |
+
o = chunk_linear_attn(
|
80 |
+
q=q,
|
81 |
+
k=k,
|
82 |
+
v=v,
|
83 |
+
normalize=True,
|
84 |
+
scale=1,
|
85 |
+
head_first=False
|
86 |
+
)
|
87 |
+
elif mode == 'parallel':
|
88 |
+
assert q.shape[-1] <= 128
|
89 |
+
o = parallel_rebased(
|
90 |
+
q=q,
|
91 |
+
k=k,
|
92 |
+
v=v,
|
93 |
+
eps=self.eps,
|
94 |
+
use_scale=True,
|
95 |
+
use_normalize=True,
|
96 |
+
head_first=False
|
97 |
+
)
|
98 |
+
o = self.o_proj(o)
|
99 |
+
o = self.dropout(o)
|
100 |
+
return o
|
101 |
+
|
102 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
103 |
+
def forward_reference(
|
104 |
+
self,
|
105 |
+
hidden_states: torch.Tensor,
|
106 |
+
filters: torch.Tensor = None,
|
107 |
+
*args,
|
108 |
+
**kwargs
|
109 |
+
):
|
110 |
+
"""
|
111 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
112 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
113 |
+
"""
|
114 |
+
b, t, _ = hidden_states.size()
|
115 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
116 |
+
|
117 |
+
q = q.view(b, t, -1, self.feature_dim).transpose(1, 2)
|
118 |
+
k = k.view(b, t, -1, self.feature_dim).transpose(1, 2)
|
119 |
+
v = v.view(b, t, -1, self.head_dim).transpose(1, 2)
|
120 |
+
|
121 |
+
# Linear attention
|
122 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
123 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
124 |
+
|
125 |
+
# Compute attention
|
126 |
+
if self.causal:
|
127 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
128 |
+
else:
|
129 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
130 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
131 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
132 |
+
y = self.dropout(y)
|
133 |
+
return y.to(hidden_states.dtype)
|
fla/layers/rwkv6.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from fla.modules import GroupNorm
|
15 |
+
from fla.modules.activations import ACT2FN
|
16 |
+
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class RWKV6Attention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
mode: str = 'chunk',
|
27 |
+
hidden_size: int = 1024,
|
28 |
+
expand_k: float = 0.5,
|
29 |
+
expand_v: float = 1.0,
|
30 |
+
num_heads: int = 4,
|
31 |
+
gate_fn: str = 'swish',
|
32 |
+
proj_low_rank_dim: int = 32,
|
33 |
+
gate_low_rank_dim: int = 64,
|
34 |
+
fuse_norm: bool = True,
|
35 |
+
elementwise_affine: Optional[bool] = True,
|
36 |
+
norm_eps: float = 1e-5,
|
37 |
+
layer_idx: int = None,
|
38 |
+
**kwargs
|
39 |
+
) -> RWKV6Attention:
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.mode = mode
|
43 |
+
self.hidden_size = hidden_size
|
44 |
+
self.expand_k = expand_k
|
45 |
+
self.expand_v = expand_v
|
46 |
+
self.num_heads = num_heads
|
47 |
+
self.proj_low_rank_dim = proj_low_rank_dim
|
48 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
49 |
+
|
50 |
+
self.key_dim = int(hidden_size * expand_k)
|
51 |
+
self.value_dim = int(hidden_size * expand_v)
|
52 |
+
self.layer_idx = layer_idx
|
53 |
+
|
54 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
55 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
56 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
57 |
+
|
58 |
+
self.head_k_dim = self.key_dim // num_heads
|
59 |
+
self.head_v_dim = self.value_dim // num_heads
|
60 |
+
|
61 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
62 |
+
self.x_proj = nn.Sequential(
|
63 |
+
LerpLinear(hidden_size, proj_low_rank_dim * 5),
|
64 |
+
nn.Tanh(),
|
65 |
+
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=False)
|
66 |
+
)
|
67 |
+
self.x_bias = nn.Parameter(torch.zeros(5, hidden_size))
|
68 |
+
|
69 |
+
self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
|
70 |
+
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
|
71 |
+
self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
|
72 |
+
self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
|
73 |
+
self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
|
74 |
+
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_k_dim))
|
75 |
+
|
76 |
+
# TODO: fuse GroupNorm and output gate
|
77 |
+
self.g_norm = GroupNorm(self.num_heads, self.value_dim, elementwise_affine=elementwise_affine, bias=True, eps=norm_eps)
|
78 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
79 |
+
self.gate_fn = ACT2FN[gate_fn]
|
80 |
+
|
81 |
+
self.apply(self._initialize_weights)
|
82 |
+
|
83 |
+
def _initialize_weights(self, module: nn.Module):
|
84 |
+
if getattr(module, "_is_hf_initialized", False):
|
85 |
+
return
|
86 |
+
if isinstance(module, nn.Linear):
|
87 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
88 |
+
if module.bias is not None:
|
89 |
+
nn.init.zeros_(module.bias)
|
90 |
+
if isinstance(module, nn.Parameter):
|
91 |
+
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
|
92 |
+
module._is_hf_initialized = True
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self,
|
96 |
+
hidden_states: torch.Tensor,
|
97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
98 |
+
past_key_values: Optional[Cache] = None,
|
99 |
+
use_cache: Optional[bool] = False,
|
100 |
+
output_attentions: Optional[bool] = False,
|
101 |
+
**kwargs
|
102 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
103 |
+
if attention_mask is not None:
|
104 |
+
assert len(attention_mask.shape) == 2, (
|
105 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
106 |
+
"for padding purposes (0 indicating padding). "
|
107 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
108 |
+
)
|
109 |
+
|
110 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
111 |
+
# launching the triton kernel for just one token will actually be slower
|
112 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
113 |
+
|
114 |
+
last_state = None
|
115 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
116 |
+
last_state = past_key_values[self.layer_idx]
|
117 |
+
|
118 |
+
if attention_mask is not None:
|
119 |
+
hidden_states = hidden_states.mul_(attention_mask[:, -hidden_states.shape[-2]:, None])
|
120 |
+
if hidden_states.shape[1] == 1 and last_state is not None:
|
121 |
+
shifted = last_state['conv_state'].unsqueeze(1)
|
122 |
+
else:
|
123 |
+
shifted = self.time_shift(hidden_states)
|
124 |
+
if last_state is not None:
|
125 |
+
shifted[:, 0] = last_state['conv_state']
|
126 |
+
|
127 |
+
delta = shifted - hidden_states
|
128 |
+
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
|
129 |
+
x = torch.einsum('b t n r, h n r-> b t n h', self.x_proj[1](x), self.x_proj[2].weight.view(hidden_size, 5, -1))
|
130 |
+
|
131 |
+
r, w, k, v, g = x.add_(self.x_bias).unbind(-2)
|
132 |
+
r = self.r_proj(hidden_states, r, delta)
|
133 |
+
w = self.w_proj(hidden_states, w, delta)
|
134 |
+
k = self.k_proj(hidden_states, k, delta)
|
135 |
+
v = self.v_proj(hidden_states, v, delta)
|
136 |
+
g = self.g_proj(hidden_states, g, delta)
|
137 |
+
|
138 |
+
# dealing with left-padding
|
139 |
+
if attention_mask is not None:
|
140 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
141 |
+
r, w, k = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim), (r, w, k))
|
142 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
143 |
+
w = -torch.exp(w)
|
144 |
+
u = self.bonus
|
145 |
+
|
146 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
147 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
148 |
+
if mode == 'fused_recurrent':
|
149 |
+
o, recurrent_state = fused_recurrent_rwkv6(
|
150 |
+
r=r,
|
151 |
+
k=k,
|
152 |
+
v=v,
|
153 |
+
w=w,
|
154 |
+
u=u,
|
155 |
+
scale=1.,
|
156 |
+
initial_state=recurrent_state,
|
157 |
+
output_final_state=use_cache,
|
158 |
+
cu_seqlens=cu_seqlens,
|
159 |
+
head_first=False
|
160 |
+
)
|
161 |
+
elif mode == 'chunk':
|
162 |
+
o, recurrent_state = chunk_rwkv6(
|
163 |
+
q=r,
|
164 |
+
k=k,
|
165 |
+
v=v,
|
166 |
+
g=w,
|
167 |
+
u=u,
|
168 |
+
scale=1.,
|
169 |
+
initial_state=recurrent_state,
|
170 |
+
output_final_state=use_cache,
|
171 |
+
cu_seqlens=cu_seqlens,
|
172 |
+
head_first=False
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
176 |
+
|
177 |
+
if past_key_values is not None:
|
178 |
+
past_key_values.update(
|
179 |
+
recurrent_state=recurrent_state,
|
180 |
+
conv_state=hidden_states[:, -1],
|
181 |
+
layer_idx=self.layer_idx,
|
182 |
+
offset=r.shape[2]
|
183 |
+
)
|
184 |
+
|
185 |
+
o = self.g_norm(rearrange(o, '... h d -> ... (h d)')) * self.gate_fn(g)
|
186 |
+
o = self.o_proj(o)
|
187 |
+
|
188 |
+
return o, None, past_key_values
|
189 |
+
|
190 |
+
|
191 |
+
class LoRA(nn.Module):
|
192 |
+
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
input_dim: int,
|
196 |
+
output_dim: int,
|
197 |
+
low_rank_dim: int,
|
198 |
+
bias: Optional[bool] = True,
|
199 |
+
activation: Optional[str] = 'tanh'
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
|
203 |
+
self.input_dim = input_dim
|
204 |
+
self.output_dim = output_dim
|
205 |
+
self.low_rank_dim = low_rank_dim
|
206 |
+
self.bias = bias
|
207 |
+
|
208 |
+
if activation is None:
|
209 |
+
self.activation = nn.Identity()
|
210 |
+
elif activation == 'sigmoid':
|
211 |
+
self.activation = nn.Sigmoid()
|
212 |
+
elif activation == 'tanh':
|
213 |
+
self.activation = nn.Tanh()
|
214 |
+
elif activation == 'relu':
|
215 |
+
self.activation = nn.ReLU()
|
216 |
+
else:
|
217 |
+
raise ValueError(f"Not supported activation `{activation}`.")
|
218 |
+
|
219 |
+
self.lora = nn.Sequential(
|
220 |
+
nn.Linear(input_dim, low_rank_dim, bias=False),
|
221 |
+
self.activation,
|
222 |
+
nn.Linear(low_rank_dim, output_dim, bias=bias)
|
223 |
+
)
|
224 |
+
|
225 |
+
def __repr__(self) -> str:
|
226 |
+
s = f"{self.__class__.__name__}("
|
227 |
+
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
|
228 |
+
if not self.bias:
|
229 |
+
s += f", bias={self.bias}"
|
230 |
+
s += ")"
|
231 |
+
return s
|
232 |
+
|
233 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
234 |
+
return self.lora(x)
|
235 |
+
|
236 |
+
|
237 |
+
class LerpLinear(nn.Module):
|
238 |
+
|
239 |
+
def __init__(
|
240 |
+
self,
|
241 |
+
input_dim: int,
|
242 |
+
output_dim: int,
|
243 |
+
low_rank_dim: Optional[int] = None
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
|
247 |
+
self.input_dim = input_dim
|
248 |
+
self.output_dim = output_dim
|
249 |
+
self.low_rank_dim = low_rank_dim
|
250 |
+
|
251 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
252 |
+
if low_rank_dim is None:
|
253 |
+
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
254 |
+
else:
|
255 |
+
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
|
256 |
+
self.mu = nn.Parameter(torch.zeros(input_dim))
|
257 |
+
|
258 |
+
def __repr__(self) -> str:
|
259 |
+
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
|
260 |
+
if self.low_rank_dim is not None:
|
261 |
+
s += f", low_rank_dim={self.low_rank_dim}"
|
262 |
+
s += ")"
|
263 |
+
return s
|
264 |
+
|
265 |
+
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
|
266 |
+
if delta is None:
|
267 |
+
shifted = self.time_shift(x)
|
268 |
+
if len(shifted.shape) == 2:
|
269 |
+
shifted = shifted.unsqueeze(1)
|
270 |
+
delta = shifted - x
|
271 |
+
return self.linear(x + delta * self.mu)
|
272 |
+
|
273 |
+
|
274 |
+
class DDLerpLinear(nn.Module):
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
input_dim: int,
|
279 |
+
output_dim: int,
|
280 |
+
low_rank_dim: Optional[int] = None
|
281 |
+
):
|
282 |
+
super().__init__()
|
283 |
+
|
284 |
+
self.input_dim = input_dim
|
285 |
+
self.output_dim = output_dim
|
286 |
+
self.low_rank_dim = low_rank_dim
|
287 |
+
|
288 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
289 |
+
if low_rank_dim is None:
|
290 |
+
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
291 |
+
else:
|
292 |
+
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
|
293 |
+
|
294 |
+
def __repr__(self) -> str:
|
295 |
+
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
|
296 |
+
if self.low_rank_dim is not None:
|
297 |
+
s += f", low_rank_dim={self.low_rank_dim}"
|
298 |
+
s += ")"
|
299 |
+
return s
|
300 |
+
|
301 |
+
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
|
302 |
+
if delta is None:
|
303 |
+
shifted = self.time_shift(x)
|
304 |
+
if len(shifted.shape) == 2:
|
305 |
+
shifted = shifted.unsqueeze(1)
|
306 |
+
delta = shifted - x
|
307 |
+
return self.linear(x + delta * mu)
|
fla/layers/simple_gla.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
14 |
+
from fla.modules.activations import ACT2FN
|
15 |
+
from fla.ops.simple_gla import chunk_simple_gla, fused_recurrent_simple_gla
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from fla.models.utils import Cache
|
19 |
+
|
20 |
+
|
21 |
+
class SimpleGatedLinearAttention(nn.Module):
|
22 |
+
r"""
|
23 |
+
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
24 |
+
This layer calls the simplified GLA kernel in which the gating is head-wise instead of elementwise.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
mode (str, Optional):
|
28 |
+
Which GLA kernel to use.
|
29 |
+
Currently available: `chunk`.
|
30 |
+
Default: `chunk`.
|
31 |
+
hidden_size (int, Optional):
|
32 |
+
The hidden size of the input. Default: 1024.
|
33 |
+
expand_k (float, Optional):
|
34 |
+
The expansion ratio for the key dim. Default: 1.0.
|
35 |
+
expand_v (float, Optional):
|
36 |
+
The expansion ratio for the value dim. Default: 1.0.
|
37 |
+
num_heads (int, Optional):
|
38 |
+
The number of heads. Default: 4.
|
39 |
+
num_kv_heads (int, Optional):
|
40 |
+
The number of key/value heads, used for MQA. Default: None.
|
41 |
+
feature_map (str, Optional):
|
42 |
+
Feature map function applied to queries/keys. Default: None.
|
43 |
+
use_short_conv (bool, Optional):
|
44 |
+
Whether to use short convolutions. Default: `False`.
|
45 |
+
conv_size (int, Optional):
|
46 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
47 |
+
conv_bias (bool, Optional):
|
48 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
49 |
+
gate_fn (str, Optional):
|
50 |
+
The activation function for the output gate. Default: `swish`.
|
51 |
+
elementwise_affine (bool, Optional):
|
52 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
53 |
+
norm_eps (float, Optional):
|
54 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
55 |
+
gate_logit_normalizer (int, Optional):
|
56 |
+
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
57 |
+
fuse_norm (bool, Optional):
|
58 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
59 |
+
layer_idx (int, Optional):
|
60 |
+
The index of the layer. Default: None.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
mode: str = 'chunk',
|
66 |
+
hidden_size: int = 1024,
|
67 |
+
expand_k: float = 1.,
|
68 |
+
expand_v: float = 1.,
|
69 |
+
num_heads: int = 4,
|
70 |
+
num_kv_heads: Optional[int] = None,
|
71 |
+
feature_map: Optional[str] = None,
|
72 |
+
use_short_conv: bool = True,
|
73 |
+
conv_size: int = 4,
|
74 |
+
conv_bias: bool = False,
|
75 |
+
gate_fn: str = 'swish',
|
76 |
+
elementwise_affine: Optional[bool] = True,
|
77 |
+
norm_eps: float = 1e-5,
|
78 |
+
gate_logit_normalizer: int = 16,
|
79 |
+
fuse_norm: bool = True,
|
80 |
+
layer_idx: int = None,
|
81 |
+
) -> SimpleGatedLinearAttention:
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.mode = mode
|
85 |
+
self.hidden_size = hidden_size
|
86 |
+
self.expand_k = expand_k
|
87 |
+
self.expand_v = expand_v
|
88 |
+
self.num_heads = num_heads
|
89 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
90 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
91 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
92 |
+
|
93 |
+
self.use_short_conv = use_short_conv
|
94 |
+
self.conv_size = conv_size
|
95 |
+
self.conv_bias = conv_bias
|
96 |
+
|
97 |
+
self.key_dim = int(hidden_size * expand_k)
|
98 |
+
self.value_dim = int(hidden_size * expand_v)
|
99 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
100 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
101 |
+
self.layer_idx = layer_idx
|
102 |
+
|
103 |
+
assert mode in ['chunk', "fused_recurrent"], f"Not suppoerted mode `{mode}`."
|
104 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
105 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
106 |
+
|
107 |
+
self.head_k_dim = self.key_dim // num_heads
|
108 |
+
self.head_v_dim = self.value_dim // num_heads
|
109 |
+
|
110 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
111 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
112 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
113 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
114 |
+
|
115 |
+
if use_short_conv:
|
116 |
+
self.conv_size = conv_size
|
117 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
118 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
119 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
120 |
+
|
121 |
+
self.gk_proj = nn.Linear(hidden_size, self.num_heads)
|
122 |
+
|
123 |
+
if gate_fn == 'swish' and fuse_norm:
|
124 |
+
self.g_norm_swish_gate = FusedRMSNormGated(
|
125 |
+
hidden_size=self.head_v_dim,
|
126 |
+
elementwise_affine=elementwise_affine,
|
127 |
+
eps=norm_eps
|
128 |
+
)
|
129 |
+
self.fuse_norm_and_gate = True
|
130 |
+
else:
|
131 |
+
self.fuse_norm_and_gate = False
|
132 |
+
self.g_norm = RMSNorm(
|
133 |
+
hidden_size=self.head_v_dim,
|
134 |
+
elementwise_affine=elementwise_affine,
|
135 |
+
eps=norm_eps
|
136 |
+
)
|
137 |
+
self.gate_fn = ACT2FN[gate_fn]
|
138 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
139 |
+
|
140 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self,
|
144 |
+
hidden_states: torch.Tensor,
|
145 |
+
attention_mask: Optional[torch.Tensor] = None,
|
146 |
+
past_key_values: Optional[Cache] = None,
|
147 |
+
use_cache: Optional[bool] = False,
|
148 |
+
output_attentions: Optional[bool] = False,
|
149 |
+
**kwargs
|
150 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
151 |
+
if attention_mask is not None:
|
152 |
+
assert len(attention_mask.shape) == 2, (
|
153 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
154 |
+
"for padding purposes (0 indicating padding). "
|
155 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
156 |
+
)
|
157 |
+
|
158 |
+
# launching the triton kernel for just one token will actually be slower
|
159 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
160 |
+
|
161 |
+
last_state = None
|
162 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
163 |
+
last_state = past_key_values[self.layer_idx]
|
164 |
+
|
165 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
166 |
+
if self.use_short_conv:
|
167 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
168 |
+
if last_state is not None:
|
169 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
170 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
171 |
+
q, conv_state_q = self.q_conv1d(
|
172 |
+
x=self.q_proj(hidden_states),
|
173 |
+
mask=conv_mask,
|
174 |
+
cache=conv_state_q,
|
175 |
+
output_final_state=use_cache,
|
176 |
+
cu_seqlens=cu_seqlens
|
177 |
+
)
|
178 |
+
k, conv_state_k = self.k_conv1d(
|
179 |
+
x=self.k_proj(hidden_states),
|
180 |
+
mask=conv_mask,
|
181 |
+
cache=conv_state_k,
|
182 |
+
output_final_state=use_cache,
|
183 |
+
cu_seqlens=cu_seqlens
|
184 |
+
)
|
185 |
+
v, conv_state_v = self.v_conv1d(
|
186 |
+
x=self.v_proj(hidden_states),
|
187 |
+
mask=conv_mask,
|
188 |
+
cache=conv_state_v,
|
189 |
+
output_final_state=use_cache,
|
190 |
+
cu_seqlens=cu_seqlens
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
q = self.q_proj(hidden_states)
|
194 |
+
k = self.k_proj(hidden_states)
|
195 |
+
v = self.v_proj(hidden_states)
|
196 |
+
gk = self.gk_proj(hidden_states)
|
197 |
+
|
198 |
+
if self.feature_map_fn is not None:
|
199 |
+
q, k = map(self.feature_map_fn, (q, k))
|
200 |
+
# dealing with left-padding
|
201 |
+
if attention_mask is not None:
|
202 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
203 |
+
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
204 |
+
if self.num_kv_groups > 1:
|
205 |
+
k, v = (repeat(x, '... (h d) -> ... (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v))
|
206 |
+
else:
|
207 |
+
k, v = (rearrange(x, '... (h d) -> ... h d', h=self.num_kv_heads) for x in (k, v))
|
208 |
+
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
209 |
+
|
210 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
211 |
+
if mode == 'chunk':
|
212 |
+
o, recurrent_state = chunk_simple_gla(
|
213 |
+
q=q,
|
214 |
+
k=k,
|
215 |
+
v=v,
|
216 |
+
gk=gk,
|
217 |
+
initial_state=recurrent_state,
|
218 |
+
output_final_state=use_cache,
|
219 |
+
cu_seqlens=cu_seqlens,
|
220 |
+
head_first=False
|
221 |
+
)
|
222 |
+
elif mode == 'fused_recurrent':
|
223 |
+
o, recurrent_state = fused_recurrent_simple_gla(
|
224 |
+
q=q,
|
225 |
+
k=k,
|
226 |
+
v=v,
|
227 |
+
gk=gk,
|
228 |
+
initial_state=recurrent_state,
|
229 |
+
output_final_state=use_cache,
|
230 |
+
cu_seqlens=cu_seqlens,
|
231 |
+
head_first=False
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
235 |
+
|
236 |
+
if past_key_values is not None:
|
237 |
+
past_key_values.update(
|
238 |
+
recurrent_state=recurrent_state,
|
239 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
240 |
+
layer_idx=self.layer_idx,
|
241 |
+
offset=q.shape[1]
|
242 |
+
)
|
243 |
+
|
244 |
+
g = self.g_proj(hidden_states)
|
245 |
+
if self.fuse_norm_and_gate:
|
246 |
+
g = rearrange(g, 'b t (h d) -> b t h d', h=self.num_heads)
|
247 |
+
o = self.g_norm_swish_gate(o, g)
|
248 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
249 |
+
else:
|
250 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
251 |
+
o = o * self.gate_fn(g)
|
252 |
+
o = self.o_proj(o)
|
253 |
+
|
254 |
+
return o, None, past_key_values
|
255 |
+
|
256 |
+
def state_size(self, **kwargs) -> int:
|
257 |
+
state_size = self.key_dim * self.head_v_dim
|
258 |
+
for module in self.children():
|
259 |
+
if isinstance(module, ShortConvolution):
|
260 |
+
state_size += module.state_size
|
261 |
+
return state_size
|
fla/ops/__init__.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .abc import chunk_abc
|
4 |
+
from .attn import parallel_attn, parallel_rectified_attn, parallel_softpick_attn, naive_attn, naive_rectified_attn, naive_softpick_attn
|
5 |
+
from .based import fused_chunk_based, parallel_based
|
6 |
+
from .delta_rule import chunk_delta_rule, fused_chunk_delta_rule, fused_recurrent_delta_rule
|
7 |
+
from .forgetting_attn import parallel_forgetting_attn
|
8 |
+
from .gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
|
9 |
+
from .generalized_delta_rule import (
|
10 |
+
chunk_dplr_delta_rule,
|
11 |
+
chunk_iplr_delta_rule,
|
12 |
+
fused_recurrent_dplr_delta_rule,
|
13 |
+
fused_recurrent_iplr_delta_rule
|
14 |
+
)
|
15 |
+
from .gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
16 |
+
from .gsa import chunk_gsa, fused_recurrent_gsa
|
17 |
+
from .hgrn import fused_recurrent_hgrn
|
18 |
+
from .lightning_attn import chunk_lightning_attn, fused_recurrent_lightning_attn
|
19 |
+
from .linear_attn import chunk_linear_attn, fused_chunk_linear_attn, fused_recurrent_linear_attn
|
20 |
+
from .nsa import parallel_nsa
|
21 |
+
from .retention import chunk_retention, fused_chunk_retention, fused_recurrent_retention, parallel_retention
|
22 |
+
from .rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
|
23 |
+
from .rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7
|
24 |
+
from .simple_gla import chunk_simple_gla, fused_recurrent_simple_gla, parallel_simple_gla
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
'chunk_abc',
|
28 |
+
'parallel_attn', 'parallel_rectified_attn', 'parallel_softpick_attn',
|
29 |
+
'naive_attn', 'naive_rectified_attn', 'naive_softpick_attn',
|
30 |
+
'fused_chunk_based', 'parallel_based',
|
31 |
+
'chunk_delta_rule', 'fused_chunk_delta_rule', 'fused_recurrent_delta_rule',
|
32 |
+
'parallel_forgetting_attn',
|
33 |
+
'chunk_gated_delta_rule', 'fused_recurrent_gated_delta_rule',
|
34 |
+
'chunk_dplr_delta_rule', 'chunk_iplr_delta_rule',
|
35 |
+
'fused_recurrent_dplr_delta_rule', 'fused_recurrent_iplr_delta_rule',
|
36 |
+
'chunk_gla', 'fused_chunk_gla', 'fused_recurrent_gla',
|
37 |
+
'chunk_gsa', 'fused_recurrent_gsa',
|
38 |
+
'fused_recurrent_hgrn',
|
39 |
+
'chunk_lightning_attn', 'fused_recurrent_lightning_attn',
|
40 |
+
'chunk_linear_attn', 'fused_chunk_linear_attn', 'fused_recurrent_linear_attn',
|
41 |
+
'parallel_nsa',
|
42 |
+
'chunk_retention', 'fused_chunk_retention', 'fused_recurrent_retention', 'parallel_retention',
|
43 |
+
'chunk_rwkv6', 'fused_recurrent_rwkv6',
|
44 |
+
'chunk_rwkv7', 'fused_recurrent_rwkv7',
|
45 |
+
'chunk_simple_gla', 'fused_recurrent_simple_gla', 'parallel_simple_gla',
|
46 |
+
]
|
fla/ops/attn/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .parallel import parallel_attn
|
4 |
+
from .parallel_rectified import parallel_rectified_attn
|
5 |
+
from .parallel_softpick import parallel_softpick_attn
|
6 |
+
from .naive import naive_attn
|
7 |
+
from .naive_rectified import naive_rectified_attn
|
8 |
+
from .naive_softpick import naive_softpick_attn
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
'parallel_attn',
|
12 |
+
'parallel_rectified_attn',
|
13 |
+
'parallel_softpick_attn',
|
14 |
+
'naive_attn',
|
15 |
+
'naive_rectified_attn',
|
16 |
+
'naive_softpick_attn',
|
17 |
+
]
|
fla/ops/attn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (646 Bytes). View file
|
|
fla/ops/attn/__pycache__/naive.cpython-311.pyc
ADDED
Binary file (2.1 kB). View file
|
|
fla/ops/attn/__pycache__/naive_rectified.cpython-311.pyc
ADDED
Binary file (2.34 kB). View file
|
|
fla/ops/attn/__pycache__/parallel.cpython-311.pyc
ADDED
Binary file (34 kB). View file
|
|
fla/ops/attn/naive.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
def naive_attn(
|
6 |
+
q: torch.Tensor,
|
7 |
+
k: torch.Tensor,
|
8 |
+
v: torch.Tensor,
|
9 |
+
scale: Optional[float] = None,
|
10 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
11 |
+
head_first: bool = False
|
12 |
+
) -> torch.Tensor:
|
13 |
+
head_dim = q.shape[-1]
|
14 |
+
if scale is None:
|
15 |
+
scale = 1.0 / (head_dim ** 0.5)
|
16 |
+
if not head_first:
|
17 |
+
q, k, v = map(lambda x: rearrange(x, 'b t h d -> b h t d'), (q, k, v))
|
18 |
+
q_len = q.shape[-2]
|
19 |
+
k_len = k.shape[-2]
|
20 |
+
mask = torch.tril(torch.ones(k_len, k_len, device=q.device))
|
21 |
+
wei = torch.matmul(q, k.transpose(2, 3)) # shape: (batch_size, num_heads, q_len, k_len)
|
22 |
+
wei = wei * scale
|
23 |
+
wei = wei.masked_fill(mask[k_len-q_len:k_len, :k_len] == 0, float('-inf'))
|
24 |
+
wei = torch.softmax(wei.float(), dim=-1).to(q.dtype)
|
25 |
+
o = torch.matmul(wei, v) # shape: (batch_size, num_heads, q_len, head_dim)
|
26 |
+
if not head_first:
|
27 |
+
o = rearrange(o, 'b h t d -> b t h d')
|
28 |
+
return o, wei
|
fla/ops/attn/naive_rectified.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Optional
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
def naive_rectified_attn(
|
6 |
+
q: torch.Tensor,
|
7 |
+
k: torch.Tensor,
|
8 |
+
v: torch.Tensor,
|
9 |
+
scale: Optional[float] = None,
|
10 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
11 |
+
head_first: bool = False
|
12 |
+
) -> torch.Tensor:
|
13 |
+
head_dim = q.shape[-1]
|
14 |
+
if scale is None:
|
15 |
+
scale = 1.0 / (head_dim ** 0.5)
|
16 |
+
if not head_first:
|
17 |
+
q, k, v = map(lambda x: rearrange(x, 'b t h d -> b h t d'), (q, k, v))
|
18 |
+
q_len = q.shape[-2]
|
19 |
+
k_len = k.shape[-2]
|
20 |
+
mask = torch.tril(torch.ones(k_len, k_len, device=q.device))
|
21 |
+
wei = torch.matmul(q, k.transpose(2, 3)) # shape: (batch_size, num_heads, q_len, k_len)
|
22 |
+
wei = wei * scale
|
23 |
+
wei = torch.where(wei >= 0, wei, float('-inf'))
|
24 |
+
wei = wei.masked_fill(mask[k_len-q_len:k_len, :k_len] == 0, float('-inf'))
|
25 |
+
wei = torch.softmax(wei.float(), dim=-1).to(q.dtype)
|
26 |
+
wei = torch.nan_to_num(wei, nan=0.0)
|
27 |
+
o = torch.matmul(wei, v) # shape: (batch_size, num_heads, q_len, head_dim)
|
28 |
+
if not head_first:
|
29 |
+
o = rearrange(o, 'b h t d -> b t h d')
|
30 |
+
return o, wei
|
fla/ops/attn/naive_softpick.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from typing import Optional
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
def softpick(x, dim=-1, eps=1e-8):
|
7 |
+
# softpick function: relu(exp(x)-1) / sum(abs(exp(x)-1))
|
8 |
+
# numerically stable version
|
9 |
+
x_m = torch.max(x, dim=dim, keepdim=True).values
|
10 |
+
x_m_e_m = torch.exp(-x_m)
|
11 |
+
x_e_1 = torch.exp(x - x_m) - x_m_e_m
|
12 |
+
r_x_e_1 = F.relu(x_e_1)
|
13 |
+
a_x_e_1 = torch.where(x.isfinite(), torch.abs(x_e_1), 0)
|
14 |
+
return r_x_e_1 / (torch.sum(a_x_e_1, dim=dim, keepdim=True) + eps) # epsilon is only useful if all inputs are EXACTLY 0. we might not even need it
|
15 |
+
|
16 |
+
def naive_softpick_attn(
|
17 |
+
q: torch.Tensor,
|
18 |
+
k: torch.Tensor,
|
19 |
+
v: torch.Tensor,
|
20 |
+
scale: Optional[float] = None,
|
21 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
22 |
+
head_first: bool = False
|
23 |
+
) -> torch.Tensor:
|
24 |
+
head_dim = q.shape[-1]
|
25 |
+
if scale is None:
|
26 |
+
scale = 1.0 / (head_dim ** 0.5)
|
27 |
+
if not head_first:
|
28 |
+
q, k, v = map(lambda x: rearrange(x, 'b t h d -> b h t d'), (q, k, v))
|
29 |
+
q_len = q.shape[-2]
|
30 |
+
k_len = k.shape[-2]
|
31 |
+
mask = torch.tril(torch.ones(k_len, k_len, device=q.device))
|
32 |
+
wei = torch.matmul(q, k.transpose(2, 3)) # shape: (batch_size, num_heads, q_len, k_len)
|
33 |
+
wei = wei * scale
|
34 |
+
wei = wei.masked_fill(mask[k_len-q_len:k_len, :k_len] == 0, float('-inf'))
|
35 |
+
wei = softpick(wei.float(), dim=-1).to(q.dtype)
|
36 |
+
o = torch.matmul(wei, v) # shape: (batch_size, num_heads, q_len, head_dim)
|
37 |
+
if not head_first:
|
38 |
+
o = rearrange(o, 'b h t d -> b t h d')
|
39 |
+
return o, wei
|