zaydzuhri's picture
Add files using upload-large-folder tool
0298ad2 verified
raw
history blame
26.3 kB
# -*- coding: utf-8 -*-
from __future__ import annotations
import copy
import pickle
from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
import datasets
import numpy as np
import torch
from datasets import Dataset, IterableDataset
from datasets.iterable_dataset import ShufflingConfig
from torch.distributed.checkpoint.stateful import Stateful
from torchdata.stateful_dataloader import StatefulDataLoader
from transformers import PreTrainedTokenizer
from torchtitan.tools.logging import logger
class BufferShuffledIterableDataset(IterableDataset):
def __init__(
self,
dataset: Dataset,
tokenizer: PreTrainedTokenizer,
seq_len: int = 2048,
rank: int = 0,
world_size: int = 1,
buffer_size: int = 1024,
) -> BufferShuffledIterableDataset:
self.dataset = dataset
self.tokenizer = tokenizer
self.data = dataset.shard(world_size, rank)
self.seq_len = seq_len
self.rank = rank
self.world_size = world_size
self.buffer_size = buffer_size
if tokenizer.vocab_size < torch.iinfo(torch.int16).max:
self.dtype = torch.int16
elif tokenizer.vocab_size < torch.iinfo(torch.int32).max:
self.dtype = torch.int32
else:
self.dtype = torch.int64
self.states = None
self.buffer = torch.tensor([], dtype=self.dtype)
self.tokens = []
self.rand_id = 0
self.token_id = 0
self.rng_state = None
self._epoch = 0
def __iter__(self):
g = torch.Generator()
g.manual_seed(self._epoch + self.rank)
if self.rng_state is not None:
g.set_state(self.rng_state)
rand_it = self.randint(0, self.buffer_size, g=g)
if self.states is not None:
self.data.load_state_dict(self.states)
# max number of tokens allowed in the chunk buffer
n_tokens = self.buffer_size * self.seq_len
while True:
for sample in self.tokenize(self.data):
# keep appending the samples to the token buffer
self.tokens += sample
# if the token buffer is full, start sampling
# NOTE: we first convert the token ids to a tensor of shape [n_chunks, seq_len] for efficiency
if len(self.buffer) == 0 and len(self.tokens) >= n_tokens:
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=self.dtype).view(self.buffer_size, -1)
self.tokens = self.tokens[n_tokens:]
if len(self.buffer) == self.buffer_size:
yield from self.sample(rand_it)
n_chunks = len(self.tokens) // self.seq_len
# handle the left tokens in the buffer
if n_chunks > 0:
n_tokens = n_chunks * self.seq_len
indices = torch.randperm(n_chunks, generator=g).tolist()
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=torch.long).view(n_chunks, -1)
self.tokens = self.tokens[n_tokens:]
for i in indices:
yield {'input_ids': self.buffer[i]}
def tokenize(self, data, batch_size: int = 64):
texts, states = [], []
for sample in data:
texts.append(sample['text'])
states.append(self.data.state_dict())
if len(texts) == batch_size:
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
texts, states = [], []
if len(texts) > 0:
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
def sample(self, indices):
n_tokens = (len(self.tokens) // self.seq_len) * self.seq_len
while self.token_id < n_tokens:
i = next(indices)
start, end = self.token_id, self.token_id + self.seq_len
self.token_id += self.seq_len
yield {'input_ids': self.buffer[i].to(torch.long)}
self.buffer[i] = torch.tensor(self.tokens[start:end], dtype=self.dtype)
self.token_id = 0
self.tokens = self.tokens[n_tokens:]
def randint(self, low: int, high: int, buffer_size: int = 1024, g: torch.Generator = torch.Generator()) -> Iterable[int]:
indices = torch.empty(buffer_size, dtype=torch.long)
while True:
# record the generator states before sampling
self.rng_state = g.get_state()
indices = torch.randint(low, high, (buffer_size,), out=indices, generator=g)
for i in indices[self.rand_id:].tolist():
self.rand_id += 1
yield i
self.rand_id = 0
def set_epoch(self, epoch):
self._epoch = epoch
if hasattr(self.dataset, 'set_epoch'):
self.dataset.set_epoch(epoch)
def state_dict(self):
return {
'states': self.states,
'buffer': self.buffer.clone(),
'tokens': deepcopy(self.tokens),
'rand_id': self.rand_id,
'token_id': self.token_id,
'rng_state': self.rng_state,
'epoch': self._epoch,
}
def load_state_dict(self, state_dict):
self.states = state_dict['states']
self.buffer = state_dict['buffer'].clone()
self.tokens = deepcopy(state_dict['tokens'])
self.rand_id = state_dict['rand_id']
self.token_id = state_dict['token_id']
self.rng_state = state_dict['rng_state'].clone() if state_dict['rng_state'] is not None else None
self._epoch = state_dict['epoch']
class OnlineTokenizedIterableDataset(IterableDataset):
def __init__(
self, dataset: Dataset, tokenizer: PreTrainedTokenizer, seq_len: int = 2048, rank: int = 0, world_size: int = 1
) -> OnlineTokenizedIterableDataset:
self.dataset = dataset
self.tokenizer = tokenizer
self.data = dataset.shard(world_size, rank)
self.seq_len = seq_len
self.rank = rank
self.world_size = world_size
self.states = None
self.tokens = []
def __iter__(self):
if self.states is not None:
self.data.load_state_dict(self.states)
while True:
for sample in self.tokenize(self.data):
# keep appending the samples to the token buffer
self.tokens += sample
while len(self.tokens) >= self.seq_len:
input_ids = torch.tensor(self.tokens[:self.seq_len], dtype=torch.long)
self.tokens = self.tokens[self.seq_len:]
yield {'input_ids': input_ids}
def tokenize(self, data, buffer_size: int = 64):
buffer, states = [], []
for sample in data:
if sample.get('text', None) is not None:
buffer.append(sample['text'])
elif sample.get('content', None) is not None:
buffer.append(sample['content'])
else:
raise ValueError(f"No 'text' or 'content' field found in sample:\n{sample}")
states.append(self.data.state_dict())
if len(buffer) == buffer_size:
for s, tokenized in zip(states, self.tokenizer(buffer, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
buffer, states = [], []
if len(buffer) > 0:
for s, tokenized in zip(states, self.tokenizer(buffer, return_attention_mask=False)['input_ids']):
self.states = s
yield tokenized
def state_dict(self):
return {'states': self.states, 'tokens': deepcopy(self.tokens)}
def load_state_dict(self, state_dict):
self.states = state_dict['states']
self.tokens = deepcopy(state_dict['tokens'])
class BufferShuffledExamplesIterable(datasets.iterable_dataset.BufferShuffledExamplesIterable):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _init_state_dict(self) -> dict:
self._state_dict = self.ex_iterable._init_state_dict()
self._state_dict['mem_buffer'] = ([],)
self._state_dict['bit_generator_state'] = self.generator.bit_generator.state
self._state_dict['bit_generator_index_offset'] = 0
self._state_dict['bit_generator_index_offset_shuffle'] = 0
return self._state_dict
def __iter__(self):
buffer_size = self.buffer_size
rng = deepcopy(self.generator)
# this is the shuffle buffer that we keep in memory
mem_buffer = self._state_dict['mem_buffer'][0]
# this is an infinite iterator that randomly samples the index of the source to pick examples from
index_offset = self._state_dict['bit_generator_index_offset'] if self._state_dict else 0
if self._state_dict:
rng.bit_generator.state = self._state_dict['bit_generator_state']
indices_iterator = self._iter_random_indices(rng, buffer_size, random_batch_size=buffer_size)
# skip already consumed ones
for _ in range(index_offset):
i = next(indices_iterator)
for x in self.ex_iterable:
if len(mem_buffer) < buffer_size: # if the buffer is not full, keep filling the buffer
mem_buffer.append(x)
else: # otherwise, pick an example from it
i = next(indices_iterator)
index_offset = (index_offset + 1) % buffer_size
if self._state_dict:
self._state_dict['bit_generator_index_offset'] = index_offset
if index_offset == 0:
self._state_dict['bit_generator_state'] = rng.bit_generator.state
selected = mem_buffer[i]
mem_buffer[i] = x # replace the picked example by a new one
yield selected
index_offset = self._state_dict['bit_generator_index_offset_shuffle'] if self._state_dict else 0
if self._state_dict:
rng.bit_generator.state = self._state_dict['bit_generator_state']
# when we run out of examples, we shuffle the remaining examples in the buffer and yield them
for i in rng.permutation(len(mem_buffer))[index_offset:].tolist():
index_offset = index_offset + 1
if self._state_dict:
self._state_dict['bit_generator_index_offset_shuffle'] = index_offset
yield mem_buffer[i]
def shuffle_data_sources(self, generator: np.random.Generator) -> BufferShuffledExamplesIterable:
"""Shuffle the wrapped examples iterable as well as the shuffling buffer."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> BufferShuffledExamplesIterable:
"""Keep only the requested shard."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
buffer_size=self.buffer_size,
generator=self.generator,
)
def load_state_dict(self, state_dict: dict) -> dict:
def _inner_load_state_dict(state, new_state):
if new_state is not None and isinstance(state, dict):
for key in new_state:
state[key] = _inner_load_state_dict(state[key], new_state[key])
return state
elif new_state is not None and isinstance(state, list):
for i in range(len(state)):
state[i] = _inner_load_state_dict(state[i], new_state[i])
return state
return new_state
return _inner_load_state_dict(self._state_dict, state_dict)
def shuffle(
dataset: IterableDataset,
seed: int = 42,
generator: np.random.Generator = None,
buffer_size: int = 1024,
):
generator = np.random.default_rng(seed) if generator is None else deepcopy(generator)
return IterableDataset(
ex_iterable=BufferShuffledExamplesIterable(dataset._ex_iterable, buffer_size=buffer_size, generator=generator),
info=dataset._info.copy(),
split=dataset._split,
formatting=dataset._formatting,
shuffling=ShufflingConfig(generator=generator, _original_seed=seed),
distributed=copy.deepcopy(dataset._distributed),
token_per_repo_id=dataset._token_per_repo_id,
)
@dataclass
class DataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded if `varlen=False`.
If `varlen=True`, sequences are expected to be concatenated, and labels match inputs.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
context_len (`int`, optional):
When `varlen=True`, sequences longer than this length within a document
(as determined by `cu_seqlens`) will be further chunked.
varlen (`bool`):
Whether to handle variable length concatenated sequences (`True`) or padded batches (`False`).
Returns:
A dictionary with the following keys:
- `input_ids`: Tensor of input IDs. Shape `[batch_size, seq_len]` if `varlen=False`, `[1, total_len]` if `varlen=True`.
- `labels`: Tensor of labels. Shape matches `input_ids`. Padding positions are masked with -100 if `varlen=False`.
- `attention_mask`: Tensor indicating non-padding tokens (only if `varlen=False`). Shape matches `input_ids`.
- `cu_seqlens`: Tensor of cumulative sequence lengths (only if `varlen=True`). Shape `[1, num_sequences + 1]`.
NOTE: When `varlen=True`, the `batch_size` must be 1.
"""
tokenizer: PreTrainedTokenizer
context_len: Optional[int] = None
varlen: bool = False
def __call__(self, examples: List[Union[List[int], Dict[str, Any]]]) -> Dict[str, Any]:
if not isinstance(examples[0], Dict):
examples = [{'input_ids': example} for example in examples]
def tensorize(example: Dict[str, Any]) -> Dict[str, Any]:
tensorized = {}
for key in ['input_ids', 'cu_seqlens']:
if key not in example:
continue
if isinstance(example[key], List):
tensorized[key] = torch.tensor(example[key], dtype=torch.long)
elif isinstance(example[key], np.ndarray):
tensorized[key] = torch.from_numpy(example[key])
else:
tensorized[key] = example[key]
return tensorized
examples = list(map(tensorize, examples))
if not self.varlen:
# --- Handling for varlen=False (Batch Padding) ---
length_of_first = examples[0]['input_ids'].size(0)
needs_padding = not all(example['input_ids'].size(0) == length_of_first for example in examples)
if needs_padding:
# Check for pad token if padding is actually required
if self.tokenizer.pad_token_id is None:
raise ValueError(
f'You are attempting to pad samples but the tokenizer you are using '
f'({self.tokenizer.__class__.__name__}) does not have a pad token.'
)
# Pad using the tokenizer, ensuring attention_mask is returned
batch = self.tokenizer.pad(examples, return_tensors='pt', return_attention_mask=True)
else:
# No padding needed, stack directly and create a full attention mask
input_ids = torch.stack([example['input_ids'] for example in examples], dim=0)
batch = {
'input_ids': input_ids,
# Create attention mask of all ones
'attention_mask': torch.ones_like(input_ids),
}
# Create labels by cloning input_ids
labels = batch['input_ids'].clone()
# Mask labels only where attention_mask is 0 (padding positions)
if 'attention_mask' in batch:
labels[batch['attention_mask'] == 0] = -100
batch['labels'] = labels
else:
# --- Handling for varlen=True (Concatenated Sequences) ---
if len(examples) > 1:
raise ValueError('The batch size must be 1 for inputs with variable lengths (varlen=True).')
batch = {'input_ids': torch.cat([example['input_ids'] for example in examples], dim=0).unsqueeze(0)}
# --- cu_seqlens calculation logic remains the same ---
if 'cu_seqlens' in examples[0]:
batch['cu_seqlens'] = (
torch.cat([example['cu_seqlens'] for example in examples], dim=0).unsqueeze(0).to(dtype=torch.int32)
) # Ensure int32
else:
# determine boundaries by bos/eos positions
# Check for bos_token_id first
if self.tokenizer.bos_token_id is not None:
cu_seqlens = []
# Handle case where the sequence doesn't start with BOS
if batch['input_ids'][0, 0] != self.tokenizer.bos_token_id:
cu_seqlens.append(torch.tensor([0], device=batch['input_ids'].device)) # Match device
# Find all BOS token positions
bos_positions = torch.where(batch['input_ids'].eq(self.tokenizer.bos_token_id))[1]
# Ensure bos_positions is on the correct device if empty
if bos_positions.numel() == 0 and len(cu_seqlens) > 0:
cu_seqlens.append(bos_positions.to(cu_seqlens[0].device))
elif bos_positions.numel() > 0:
cu_seqlens.append(bos_positions)
# Add the end of the entire batch
cu_seqlens.append(
torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
) # Match device and use size(1)
# Filter out empty tensors before cat
cu_seqlens = [t for t in cu_seqlens if t.numel() > 0]
if not cu_seqlens: # Handle case where input is empty or has no BOS
batch['cu_seqlens'] = torch.tensor(
[0, batch['input_ids'].size(1)], dtype=torch.int32, device=batch['input_ids'].device
)
else:
batch['cu_seqlens'] = torch.cat(cu_seqlens, dim=0).to(dtype=torch.int32)
# Else, check for eos_token_id
elif self.tokenizer.eos_token_id is not None:
cu_seqlens = [torch.tensor([0], device=batch['input_ids'].device)] # Match device
# Find positions *after* EOS tokens
eos_positions = torch.where(batch['input_ids'].eq(self.tokenizer.eos_token_id))[1] + 1
# Ensure eos_positions is on the correct device if empty
if eos_positions.numel() > 0:
cu_seqlens.append(eos_positions)
# Handle case where the sequence doesn't end with EOS
if batch['input_ids'][0, -1] != self.tokenizer.eos_token_id:
# Only add the final length if the last found EOS wasn't already the end
if eos_positions.numel() == 0 or eos_positions[-1] != batch['input_ids'].size(1):
cu_seqlens.append(
torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
) # Match device and use size(1)
# Filter out empty tensors before cat
cu_seqlens = [t for t in cu_seqlens if t.numel() > 0]
if not cu_seqlens: # Handle case where input is empty or has no EOS
batch['cu_seqlens'] = torch.tensor(
[0, batch['input_ids'].size(1)], dtype=torch.int32, device=batch['input_ids'].device
)
else:
batch['cu_seqlens'] = torch.cat(cu_seqlens, dim=0).to(dtype=torch.int32)
# Else, neither BOS nor EOS is usable
else:
raise ValueError(
'For varlen=True without precomputed cu_seqlens, the tokenizer must have either a bos_token_id '
'or an eos_token_id defined to act as sequence separators.'
)
# --- cu_seqlens validation checks remain the same ---
if batch['cu_seqlens'].numel() < 2:
raise ValueError(f'Calculated cu_seqlens must have at least start and end: {batch["cu_seqlens"]}')
if not torch.all(batch['cu_seqlens'][1:] >= batch['cu_seqlens'][:-1]):
raise ValueError(f'Calculated cu_seqlens are not monotonically increasing: {batch["cu_seqlens"]}')
if batch['cu_seqlens'][0] != 0:
raise ValueError(f'Calculated cu_seqlens do not start at 0: {batch["cu_seqlens"]}')
if batch['cu_seqlens'][-1] != batch['input_ids'].size(1):
# Allow empty sequence case where cu_seqlens=[0, 0] and input_ids.size(1)=0
if not (batch['cu_seqlens'].tolist() == [0, 0] and batch['input_ids'].size(1) == 0):
raise ValueError(
f'Calculated cu_seqlens do not end at total length {batch["input_ids"].size(1)}: '
f'{batch["cu_seqlens"]}'
)
# --- context_len splitting logic remains the same ---
if self.context_len is not None:
# This logic splits sequences based on context_len *after* initial boundaries are found
bos = batch['cu_seqlens'][:-1].tolist()
eos = batch['cu_seqlens'][1:].tolist()
# Handle empty sequences between boundaries
split_boundaries = []
for i, j in zip(bos, eos):
if i < j: # Only process non-empty sequences
split_boundaries.append(torch.arange(i, j, self.context_len, device=batch['input_ids'].device))
# Add the final end point if it wasn't included by arange
final_end_point = torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
# Concatenate all boundaries
if not split_boundaries: # Handle case of completely empty input
batch['cu_seqlens'] = torch.tensor([0, 0], dtype=torch.int32, device=batch['input_ids'].device)
else:
batch['cu_seqlens'] = torch.cat(split_boundaries + [final_end_point]).to(dtype=torch.int32)
# Ensure uniqueness and sort, as arange might duplicate the endpoint
batch['cu_seqlens'] = torch.unique(batch['cu_seqlens'])
# Create labels directly from input_ids, NO padding mask needed for varlen
labels = batch['input_ids'].clone()
batch['labels'] = labels
return batch
class ParallelAwareDataLoader(StatefulDataLoader, Stateful):
"""
A wrapper around the StatefulDataLoader that ensures that the state is stored only once per DP rank.
"""
def __init__(
self,
rank: int,
dataset: IterableDataset,
batch_size: int,
collate_fn: Callable,
num_workers: int = 0,
pin_memory: bool = False,
prefetch_factor: int = 2,
persistent_workers: bool = False,
snapshot_every_n_steps: Optional[int] = 1,
):
super().__init__(
dataset=dataset,
batch_size=batch_size,
collate_fn=collate_fn,
num_workers=num_workers,
pin_memory=pin_memory,
prefetch_factor=prefetch_factor,
persistent_workers=persistent_workers,
snapshot_every_n_steps=snapshot_every_n_steps,
)
self.rank = rank
def state_dict(self) -> Dict[str, Any]:
# Store state only for dp rank to avoid replicating the same state across other dimensions
return {f'rank_{self.rank}': pickle.dumps(super().state_dict())}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
# State being empty is valid
if not state_dict:
return
if f'rank_{self.rank}' not in state_dict:
logger.warning(f'DataLoader state is empty for dp rank {self.rank}, expected key rank_{self.rank}')
return
super().load_state_dict(pickle.loads(state_dict[f'rank_{self.rank}']))
def build_dataloader(
dataset: IterableDataset,
tokenizer: PreTrainedTokenizer,
rank: int,
world_size: int,
batch_size: int,
seq_len: int,
context_len: Optional[int] = None,
varlen: bool = False,
num_workers: int = 0,
pin_memory: bool = False,
persistent_workers: bool = False,
snapshot_every_n_steps: Optional[int] = 1,
):
dataset = OnlineTokenizedIterableDataset(
dataset=dataset, tokenizer=tokenizer, seq_len=seq_len, rank=rank, world_size=world_size
)
return ParallelAwareDataLoader(
rank=rank,
dataset=dataset,
batch_size=batch_size,
collate_fn=DataCollatorForLanguageModeling(tokenizer=tokenizer, context_len=context_len, varlen=varlen),
num_workers=num_workers,
pin_memory=pin_memory,
persistent_workers=persistent_workers,
snapshot_every_n_steps=snapshot_every_n_steps,
)